Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  AI4CPO: Developing advanced strategies to improve the forecasting of the Celestial Pole Offsets

Belda, S., Karbon, M., Ferrándiz, J. M., Escapa, A., Modiri, S., Heinkelmann, R., Schuh, H. (2023): AI4CPO: Developing advanced strategies to improve the forecasting of the Celestial Pole Offsets, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4266

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Belda, Santiago1, Autor
Karbon, Maria1, Autor
Ferrándiz, José M.1, Autor
Escapa, Alberto1, Autor
Modiri, Sadegh1, Autor
Heinkelmann, R.1, 2, Autor              
Schuh, H.1, 2, Autor              
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              
21.1 Space Geodetic Techniques, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146025              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: At present, the most precise method for obtaining reliable observations of Celestial Pole Offsets (CPO) is through the use of Very Long Baseline Interferometry (VLBI). The CPO data includes a variety of components, such as the free core nutation (FCN), trends, and harmonics, which result from shortcomings in the IAU 2006/2000A precession-nutation model, geophysical disturbances and observational noise. In consequence, the possibility of forecasting CPO is limited. One possible step forward in improving these predictions is to utilize more sophisticated models. On the other hand, there is a compelling need to identify next-generation time-series algorithms to be integrated into an operational processing chain to make advanced CPO predictions. Of specific interest is the emergence of machine learning regression algorithms.The goal of this study is to advance our understanding of CPO prediction developing new models/methodologies/tools. With the support of UAVAC (University of Alicante VLBI Analysis Center), we perform a global VLBI analysis to determine empirical corrections to the precession offsets and rates, and to the amplitudes of a wide set of terms included in the IAU 2006/2000A precession-nutation theory. Additionally, we explore new strategies to get more precise FCN models. Finally, based on these empirical corrections and novel FCN models, we use a diversity of advanced machine learning regression algorithms to make CPO prediction ranging from 1 to 365 days. The performance of the trained machine learning models is investigated by comparing their predictions vs. the corrected/updated CPO time series. The validation results suggests that the trained models produce reliable estimates.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2023-07-112023-07-11
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.57757/IUGG23-4266
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Veranstaltungsort: Berlin
Start-/Enddatum: 2023-07-11 - 2023-07-20

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Potsdam : GFZ German Research Centre for Geosciences
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -