Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

AI4CPO: Developing advanced strategies to improve the forecasting of the Celestial Pole Offsets

Urheber*innen

Belda,  Santiago
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Karbon,  Maria
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Ferrándiz,  José M.
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Escapa,  Alberto
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Modiri,  Sadegh
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

/persons/resource/rob

Heinkelmann,  R.
1.1 Space Geodetic Techniques, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

/persons/resource/schuh

Schuh,  H.
1.1 Space Geodetic Techniques, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Belda, S., Karbon, M., Ferrándiz, J. M., Escapa, A., Modiri, S., Heinkelmann, R., Schuh, H. (2023): AI4CPO: Developing advanced strategies to improve the forecasting of the Celestial Pole Offsets, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4266


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5021702
Zusammenfassung
At present, the most precise method for obtaining reliable observations of Celestial Pole Offsets (CPO) is through the use of Very Long Baseline Interferometry (VLBI). The CPO data includes a variety of components, such as the free core nutation (FCN), trends, and harmonics, which result from shortcomings in the IAU 2006/2000A precession-nutation model, geophysical disturbances and observational noise. In consequence, the possibility of forecasting CPO is limited. One possible step forward in improving these predictions is to utilize more sophisticated models. On the other hand, there is a compelling need to identify next-generation time-series algorithms to be integrated into an operational processing chain to make advanced CPO predictions. Of specific interest is the emergence of machine learning regression algorithms.The goal of this study is to advance our understanding of CPO prediction developing new models/methodologies/tools. With the support of UAVAC (University of Alicante VLBI Analysis Center), we perform a global VLBI analysis to determine empirical corrections to the precession offsets and rates, and to the amplitudes of a wide set of terms included in the IAU 2006/2000A precession-nutation theory. Additionally, we explore new strategies to get more precise FCN models. Finally, based on these empirical corrections and novel FCN models, we use a diversity of advanced machine learning regression algorithms to make CPO prediction ranging from 1 to 365 days. The performance of the trained machine learning models is investigated by comparing their predictions vs. the corrected/updated CPO time series. The validation results suggests that the trained models produce reliable estimates.