English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Along-track calibration of the zhurong rover magnetometer

Aimin, D., Luo, H., Ge, Y., Zhang, Y., Tian, L., Zhang, K. (2023): Along-track calibration of the zhurong rover magnetometer, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2139

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Aimin, Du1, Author
Luo, Hao1, Author
Ge, Yasong1, Author
Zhang, Ying1, Author
Tian, Lin1, Author
Zhang, Kuixiang1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Two identical high-sensitivity triaxial Rover fluxgate magnetometers (RoMag) are mounted on Zhurong Rover to detect the surface magnetic field on Mars. Although a rover magnetic compensation procedure was conducted to remove the magnetic interferences pre-launch [Du et al., 2020], due to the different state of the payloads and electric power system such as the solar panel, an along-track calibration of the magnetometer is necessary to obtain a more accurate Martian magnetic field. With efforts from the Zhurong Rover engineering team, two methods, mast yaw rotations, and Rover yaw rotations were utilized separately to determine the Martian horizontal magnetic components. Results show that the Martian horizontal magnetic components determined by the two methods are in good agreement, with the root mean square deviation ~ 2.0 nT. The vertical component was also constrained through the pitch movements of the mast when assuming the interferences field distributes like a dipole field. A linear correlation between magnetic field measurements and the solar array currents was derived to calibrate the body field during the regular exploration. We conclude that more accurate measurements could be made when applying the calibration results in the magnetic survey on the surface of Mars.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-2139
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -