English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Variations in the Magnetic Properties of Meteoritic Cloudy Zone

Nichols, C. I. O., Bryson, J. F. J., Blukis, R., Herrero‐Albillos, J., Kronast, F., Rüffer, R., Chumakov, A. I., Harrison, R. J. (2020): Variations in the Magnetic Properties of Meteoritic Cloudy Zone. - Geochemistry Geophysics Geosystems (G3), 21, 2, e2019GC008798.
https://doi.org/10.1029/2019GC008798

Item is

Files

show Files
hide Files
:
5001720.pdf (Publisher version), 22MB
Name:
5001720.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Nichols, Claire I. O.1, Author
Bryson, James F. J.1, Author
Blukis, Roberts2, Author              
Herrero‐Albillos, Julia1, Author
Kronast, Florian1, Author
Rüffer, Rudolf1, Author
Chumakov, Aleksandr I.1, Author
Harrison, Richard J.1, Author
Affiliations:
1External Organizations, ou_persistent22              
23.5 Interface Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_754888              

Content

show
hide
Free keywords: -
 Abstract: Iron and stony‐iron meteorites form the Widmanstätten pattern during slow cooling. This pattern is composed of several microstructures whose length‐scale, composition and magnetic properties are dependent upon cooling rate. Here we focus on the cloudy zone: a region containing nanoscale tetrataenite islands with exceptional paleomagnetic recording properties. We present a systematic review of how cloudy zone properties vary with cooling rate and proximity to the adjacent tetrataenite rim. X‐ray photoemission electron microscopy is used to compare compositional and magnetization maps of the cloudy zone in the mesosiderites (slow cooling rates), the IAB iron meteorites and the pallasites (intermediate cooling rates), and the IVA iron meteorites (fast cooling rates). The proportions of magnetic phases within the cloudy zone are also characterized using Mössbauer spectroscopy. We present the first observations of the magnetic state of the cloudy zone in the mesosiderites, showing that, for such slow cooling rates, tetrataenite islands grow larger than the multidomain threshold, creating large‐scale regions of uniform magnetization across the cloudy zone that render it unsuitable for paleomagnetic analysis. For the most rapidly cooled IVA meteorites, the time available for Fe‐Ni ordering is insufficient to allow tetrataenite formation, again leading to behavior that is unsuitable for paleomagnetic analysis. The most reliable paleomagnetic remanence is recorded by meteorites with intermediate cooling rates ( urn:x-wiley:ggge:media:ggge22125:ggge22125-math-0001 2–500 °C Myr urn:x-wiley:ggge:media:ggge22125:ggge22125-math-0002) which produces islands that are “just right” in both size and degree of Fe‐Ni order.

Details

show
hide
Language(s):
 Dates: 2020
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2019GC008798
GFZPOF: p3 PT3 Earth Surface and Climate Interactions
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geochemistry Geophysics Geosystems (G3)
Source Genre: Journal, SCI, Scopus, oa , OA seit 15. September 2021
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 21 (2) Sequence Number: e2019GC008798 Start / End Page: - Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals159
Publisher: American Geophysical Union (AGU)