English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons

Eaton, D. W., Darbyshire, F., Evans, R. L., Grütter, H., Jones, A. G., Yuan, X. (2009): The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons. - Lithos, 109, 1-2, 1-22.
https://doi.org/10.1016/j.lithos.2008.05.009

Item is

Basic

show hide
Item Permalink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_238489 Version Permalink: -
Genre: Journal Article

Files

show Files
hide Files
:
12892.pdf (Any fulltext), 5MB
File Permalink:
-
Name:
12892.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Eaton, D. W.1, Author
Darbyshire, F.1, Author
Evans, R. L.1, Author
Grütter, H.1, Author
Jones, A. G.1, Author
Yuan, Xiaohui2, Author              
Affiliations:
1External Organizations, ou_persistent22              
22.4 Seismology, 2.0 Physics of the Earth, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_30023              

Content

show
hide
Free keywords: Petrologic lithosphere; Thermal lithosphere; Seismic lithosphere; Electrical lithosphere; Craton
 DDC: 550 - Earth sciences
 Abstract: The lithosphere–asthenosphere boundary (LAB) is a first-order structural discontinuity that accommodates differential motion between tectonic plates and the underlying mantle. Although it is the most extensive type of plate boundary on the planet, its definitive detection, especially beneath cratons, is proving elusive. Different proxies are used to demarcate the LAB, depending on the nature of the measurement. Here we compare interpretations of the LAB beneath three well studied Archean regions: the Kaapvaal craton, the Slave craton and the Fennoscandian Shield. For each location, xenolith and xenocryst thermobarometry define a mantle stratigraphy, as well as a steady-state conductive geotherm that constrains the minimum pressure (depth) of the base of the thermal boundary layer (TBL) to 45–65 kbar (170–245 km). High-temperature xenoliths from northern Lesotho record Fe-, Ca- and Ti-enrichment, grain-size reduction and globally unique supra-adiabatic temperatures at 53–61 kbar (200–230 km depth), all interpreted to result from efficient advection of asthenosphere-derived melts and heat into the TBL. Using a recently compiled suite of olivine creep parameters together with published geotherms, we show that beneath cratons the probable deformation mechanism near the LAB is dislocation creep, consistent with widely observed seismic and electrical anisotropy fabrics. If the LAB is dry, it is probably diffuse (> 50 km thick) and high levels of shear stress (> 2 MPa or > 20 bar) are required to accommodate plate motion. If the LAB is wet, lower shear stress is required to accommodate plate motion and the boundary may be relatively sharp (≤ 20 km thick). The seismic LAB beneath cratons is typically regarded as the base of a high-velocity mantle lid, although some workers infer its location based on a distinct change in seismic anisotropy. Surface-wave inversion studies provide depth-constrained velocity models, but are relatively insensitive to the sharpness of the LAB. The S-receiver-function method is a promising new seismic technique with complementary characteristics to surface-wave studies, since it is sensitive to sharpness of the LAB but requires independent velocity information for accurate depth estimation. Magnetotelluric (MT) observations have, for many decades, imaged an “electrical asthenosphere” layer at depths beneath the continents consistent with seismic low-velocity zones. This feature is most easily explained by the presence of a small amount of water in the asthenosphere, possibly inducing partial melt. Depth estimates based on various proxies considered here are similar, lending confidence that existing geophysical tools are effective for mapping the LAB beneath cratons.

Details

show
hide
Language(s):
 Dates: 2009
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 12892
GFZPOF: PT1 Planet Earth: Global Processes and Change
GFZPOF: PT2 Earth System Dynamics: Coupled Processes and Regional Impact
DOI: 10.1016/j.lithos.2008.05.009
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Lithos
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 109 (1-2) Sequence Number: - Start / End Page: 1 - 22 Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals327