Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Numerical Modeling of a Potential Geological CO2 Sequestration Site at Minden (Germany)

Naderi Beni, A., Kühn, M., Meyer, R., Clauser, C. (2012): Numerical Modeling of a Potential Geological CO2 Sequestration Site at Minden (Germany). - Environmental Modelling and Assessment, 17, 4, 337-351.
https://doi.org/10.1007/s10666-011-9295-x

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_245638 Versions-Permalink: -
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Naderi Beni, A.1, Autor
Kühn, Michael2, Autor              
Meyer, R.1, Autor
Clauser, C.1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2CGS Centre for Geological Storage, Geoengineering Centres, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146050              

Inhalt

einblenden:
ausblenden:
Schlagwörter: CO2 sequestration; Reactive transport; Trapping mechanisms
 DDC: 550 - Earth sciences
 Zusammenfassung: We study opportunities for CO2 sequestration in geological formations of the state North Rhine Westphalia in Germany. Simulations are performed for evaluating a potential site within the Bunter sandstone formation near the town of Minden in a depth of around 3,000 m using the numerical simulator TOUGHREACT. Our focus is on three CO2 storage mechanisms: (1) hydrodynamic trapping, (2) dissolution trapping, and (3) mineral trapping. The results show that due to buoyancy the injected CO2 phase initially migrates towards the top of the reservoir and is hydrodynamically trapped beneath the confining layer of the cap rock. Then, the CO2 spreads laterally and dissolves partially in the formation water. The dissolution of CO2 results in an increase of the density of the brine causing a downward migration until it settles after 10,000 years at the bottom of the reservoir. The simulations indicate that after 10,000 years, 15% (17 Mt) from a total of 114 Mt injected CO2 are trapped hydrodynamically, 20% (23 Mt) are trapped by dissolution, and 65% (74 Mt) are fixed in newly formed carbonates such as dawsonite, ankerite, and siderite. Within our study pressure increases near the injection well by a factor of 1.1 which is lower than the upper limit usually accepted in gas storage operations. The mineral reactions cause a net decrease of porosity and in turn a decrease of permeability down to 9% of the initial value in parts of the reservoir.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2012
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 19085
GFZPOF: PT4 Georesources: Sustainable Use and Geoengineering
DOI: 10.1007/s10666-011-9295-x
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Environmental Modelling and Assessment
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 17 (4) Artikelnummer: - Start- / Endseite: 337 - 351 Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals126