English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Depth of origin of ocean-circulation-induced magnetic signals

Irrgang, C., Saynisch, J., Thomas, M. (2018): Depth of origin of ocean-circulation-induced magnetic signals. - Annales Geophysicae, 36, 1, 167-180.
https://doi.org/10.5194/angeo-36-167-2018

Item is

Files

show Files
hide Files
:
2949889.pdf (Publisher version), 14MB
Name:
2949889.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
CC BY 4.0

Locators

show

Creators

show
hide
 Creators:
Irrgang, C.1, Author              
Saynisch, J.1, Author              
Thomas, M.1, Author              
Affiliations:
11.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146027              

Content

show
hide
Free keywords: -
 Abstract: As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.

Details

show
hide
Language(s): eng - English
 Dates: 2018
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/angeo-36-167-2018
GFZPOF: p3 PT1 Global Processes
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Annales Geophysicae
Source Genre: Journal, SCI, Scopus, oa, Scopus bis 2022
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 36 (1) Sequence Number: - Start / End Page: 167 - 180 Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals25