English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The role of Interferometric Synthetic Aperture Radar in Detecting, Mapping, Monitoring, and Modelling the Volcanic Activity of Piton de la Fournaise, La Réunion: A Review

Richter, N., Froger, J.-L. (2020): The role of Interferometric Synthetic Aperture Radar in Detecting, Mapping, Monitoring, and Modelling the Volcanic Activity of Piton de la Fournaise, La Réunion: A Review. - Remote Sensing, 12, 6, 1019.
https://doi.org/10.3390/rs12061019

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Richter, N.1, 2, Author              
Froger, Jean-Luc2, 3, Author
Affiliations:
10 Pre-GFZ, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146023              
2Etna, Deutsches GeoForschungsZentrum, ou_5026873              
3External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Synthetic Aperture Radar (SAR) remote sensing plays a significant role in volcano monitoring despite the measurements’ non real-time nature. The technique’s capability of imaging the spatial extent of ground motion has especially helped to shed light on the location, shape, and dynamics of subsurface magmatic storage and transport as well as the overall state of activity of volcanoes worldwide. A variety of different deformation phenomena are observed at exceptionally active and frequently erupting volcanoes, like Piton de la Fournaise on La Réunion Island. Those offer a powerful means of investigating related geophysical source processes and offer new insights into an active volcano’s edifice architecture, stability, and eruptive behavior. Since 1998, Interferometric Synthetic Aperture Radar (InSAR) has been playing an increasingly important role in developing our present understanding of the Piton de la Fournaise volcanic system. We here collect the most significant scientific results, identify limitations, and summarize the lessons learned from exploring the rich Piton de la Fournaise SAR data archive over the past ~20 years. For instance, the technique has delivered first evidence of the previously long suspected mobility of the volcano’s unsupported eastern flank, and it is especially useful for detecting displacements related to eruptions that occur far away from the central cone, where Global Navigation Satellite System (GNSS) stations are sparse. However, superimposed deformation processes, dense vegetation along the volcano’s lower eastern flank, and turbulent atmospheric phase contributions make Piton de la Fournaise a challenging target for applying InSAR. Multitemporal InSAR approaches that have the potential to overcome some of these limitations suffer from frequent eruptions that cause the replacement of scatterers. With increasing data acquisition rates, multisensor complementarity, and advanced processing techniques that resourcefully handle large data repositories, InSAR is progressively evolving into a near-real-time, complementary, operational volcano monitoring tool. We therefore emphasize the importance of InSAR at highly active and well-monitored volcanoes such as Mount Etna, Italy, Kīlauea Volcano, Hawai’i, and Piton de la Fournaise, La Réunion.

Details

show
hide
Language(s):
 Dates: 2020-03-222020
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.3390/rs12061019
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Remote Sensing
Source Genre: Journal, SCI, Scopus, OA
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 12 (6) Sequence Number: 1019 Start / End Page: - Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals426
Publisher: MDPI