Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  An interdisciplinary view of the long-term evolution of repository systems across scales: the iCROSS project

Bosbach, D., Geckeis, H., Heberling, F., Kolditz, O., Kühn, M., Müller, K., Stumpf, T., the iCROSS team (2021): An interdisciplinary view of the long-term evolution of repository systems across scales: the iCROSS project. - Safety of Nuclear Waste Disposal - SaND, 1, 85-87.
https://doi.org/10.5194/sand-1-85-2021

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
5008652.pdf (Verlagsversion), 352KB
Name:
5008652.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bosbach, Dirk1, Autor
Geckeis, Horst1, Autor
Heberling, Frank1, Autor
Kolditz, Olaf1, Autor
Kühn, M.2, Autor              
Müller, Katharina1, Autor
Stumpf, Thorsten1, Autor
the iCROSS team1, Autor
Affiliations:
1External Organizations, ou_persistent22              
23.4 Fluid Systems Modelling, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146047              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The interdisciplinary project “Integrity of nuclear waste repository systems – Cross-scale system understanding and analysis (iCROSS)” combines research competencies of Helmholtz scientists related to the topics of nuclear, geosciences, biosciences and environmental simulations in collaborations overarching the research fields energy and earth and environment. The focus is to understand and analyze close-to-real long-term evolutionary pathways of radioactive waste repositories across nanoscales to repository scales. The project is subdivided into work packages dealing with laboratory studies, field experiments in underground research laboratories (URLs), advanced modelling studies and the integration and alignment of data and information using virtual reality methods. In this sense, the project structure aims at a holistic view on relevant processes across scales in order to comprehensively simulate potential repository evolutions. Within the multi-barrier system of a repository for heat-generating radioactive waste, a number of complex reactions proceed, including dissolution, redox processes, biochemical reactions, gas evolution and solid/liquid interface and (co)precipitation reactions. At the same time, thermal and external mechanical stress has an impact on the conditions in a deep geological repository. All those processes are highly coupled, with multiple interdependencies on various scales and have a strong impact on radionuclide mobility and retention. In recent years, substantial progress was achieved in describing coupled thermal-hydro-mechanical-chemical-biological (THM/CB) processes in numerical simulations. A realistic and concise description of these coupled processes on different time and spatial scales is, at present, a largely unresolved scientific and computational challenge. The close interaction of experimental and simulation teams aims at a more accurate quantification and assessment of processes and thus, the reduction of uncertainties and of conservative assumptions and eventually to a close-to-real perception of the repository evolution. One focus of iCROSS is directed to relevant processes in a clay rock repository. In this context, the iCROSS team became a full member of the international Mont Terri consortium and worked in close collaboration with international and German institutions in URL projects. Respective experiments specifically deal with coupled processes at the reactive interfaces in a repository near field (e.g. the steel/bentonite and bentonite/concrete interfaces). Within iCROSS, the impact of secondary phase formation on radionuclide transport is investigated. At Mont Terri, experiments are in preparation to study radionuclide transport phenomena in clay rock formations within temperature gradients and in facies exhibiting significant heterogeneities on different scales (nm to cm). Beside those studies, high resolution exploration methods for rock characterization are developed and tested and the effect of temperature and other boundary conditions on the strength, creep properties and healing of faults within Opalinus clay are quantified. Multiphysics models coupled to reactive transport simulation have been further developed and applied to laboratory and field experiments. Results are digitally analyzed and illustrated in a visualization center, in order to enhance the comprehension of coupled processes in repository systems across scales. The present contribution provides an overview on the project and reports selected results. The impact of considering complex coupled processes in repository subsystems for the assessment of the integrity of a given (generic) repository arrangement is discussed.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2021-09-092021-09-092021-11-102021
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Interne Begutachtung
 Identifikatoren: DOI: 10.5194/sand-1-85-2021
GFZPOF: p4 T8 Georesources
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Safety of Nuclear Waste Disposal - SaND
Genre der Quelle: Zeitschrift, other, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 1 Artikelnummer: - Start- / Endseite: 85 - 87 Identifikator: Anderer: other
Publisher: Copernicus
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/20211115