English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 PreviousNext  
  Sulfur transfer along a metasomatized serpentinite-metagabbro contact in the Voltri Massif, Italy

Schwarzenbach, E., Streicher, L., Dragovic, B., Scicchitano, M. R., Wiechert, U., Codillo, E., Klein, F., Marschall, H., Scambelluri, M. (2022): Sulfur transfer along a metasomatized serpentinite-metagabbro contact in the Voltri Massif, Italy - Abstracts, EGU General Assembly 2022 (Online - Vienna, Austria 2022).
https://doi.org/10.5194/egusphere-egu22-5283

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Schwarzenbach, Esther1, Author
Streicher, Linus1, Author
Dragovic, Besim1, Author
Scicchitano, Maria Rosa2, Author              
Wiechert, Uwe1, Author
Codillo, Emmanuel1, Author
Klein, Frieder1, Author
Marschall, Horst1, Author
Scambelluri, Marco1, Author
Affiliations:
1External Organizations, ou_persistent22              
23.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146040              

Content

show
hide
Free keywords: -
 Abstract: Subduction zones provide a key link between the surficial biogenic, atmospheric and hydrospheric geochemical cycles with the Earth’s internal reservoirs. Sediment compaction and dehydration of variably altered oceanic lithosphere during subduction release volatile species (containing e.g., S, H, C, N) to the overlying mantle wedge. In particular, sulfur plays a key role in the formation of porphyry ore deposits and has a major control on redox processes in subduction zones, given it occurs in variable oxidation states from oxidized sulfate (S6+) to reduced sulfide (S2-). Here we studied samples from a contact between serpentinite and partly metasomatized eclogitic metagabbros in the Voltri Massif (Italy). We determined the bulk rock and in situ sulfur isotope composition of pyrite grains and combined this with detailed mineralogic and petrologic investigations. Along the serpentinite-metagabbro contact, the metagabbros are metasomatized to actinolite-chlorite schists and metagabbros rich in epidote and Na- and Na-Ca amphiboles. The serpentinites as well as the actinolite-chlorite schists along the serpentinite-metagabbro contact have very low sulfide contents and provide evidence for the oxidation of sulfides, including formation of Fe-oxides. Sulfur input from the serpentinite-metagabbro contact towards the less metasomatized eclogitic metagabbros is observed. This sulfur input is reflected by bulk rock δ34S values that increase from initially around +1.5‰ in samples distant from the contact to +7.3 to +12.5‰ in samples near the contact. This trend correlates with a general increase in the in situ δ34S values from core to rim of individual pyrite grains. Distinct Co and Ni growth zones in pyrite and variations in the in situ δ34S values indicate multiple phases of pyrite growth during subduction and exhumation of these rocks, with the last stage of pyrite growth clearly related to Mg-metasomatism along the serpentinite-metagabbro contact. Thus, this study provides new insight into processes of sulfur migration during metasomatism of gabbroic rocks within the subducting slab and at the slab–mantle interface.

Details

show
hide
Language(s):
 Dates: 20222022
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/egusphere-egu22-5283
 Degree: -

Event

show
hide
Title: EGU General Assembly 2022
Place of Event: Online - Vienna, Austria
Start-/End Date: 2022-05-23 - 2022-05-27

Legal Case

show

Project information

show

Source 1

show
hide
Title: Abstracts
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -