Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Classification of Stream, Hyperconcentrated, and Debris Flow Using Dimensional Analysis and Machine Learning

Du, J., Zhou, G. G., Tang, H., Turowski, J., Cui, K. F. E. (2023): Classification of Stream, Hyperconcentrated, and Debris Flow Using Dimensional Analysis and Machine Learning. - Water Resources Research, 59, 2, e2022WR033242.
https://doi.org/10.1029/2022WR033242

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
5015133.pdf (Verlagsversion), 5MB
Name:
5015133.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Du , Junhan1, Autor
Zhou , Gordon G.D.1, Autor
Tang, Hui2, Autor              
Turowski, J.3, Autor              
Cui , Kahlil F. E.1, Autor
Affiliations:
1External Organizations, ou_persistent22              
24.7 Earth Surface Process Modelling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_1729888              
34.6 Geomorphology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146045              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Extreme rainfall events in mountainous environments usually induce significant sediment runoff or mass movements - debris flows, hyperconcentrated flows and stream flows - that pose substantial threats to human life and infrastructure. However, understanding of the sediment transport mechanisms that control these torrent processes remains incomplete due to the lack of comprehensive field data. This study uses a unique field dataset to investigate the characteristics of the transport mechanisms of different channelized sediment-laden flows. Results confirm that sediments in hyperconcentrated flows and stream flows are mainly supported by viscous shear and turbulent stresses, while grain collisional stresses dominate debris-flow dynamics. Lahars, a unique sediment transport process in volcanic environments, exhibit a wide range of transport mechanisms similar to those in the three different flow types . Furthermore, the Einstein number (dimensionless sediment flux) exhibits a power-law relationship with the dimensionless flow discharge. Machine learning is then used to draw boundaries in the Einstein number-dimensionless discharge scheme to classify one flow from the other and thereby aid in developing appropriate hazard assessments for torrential processes in mountainous and volcanic environments based on measurable hydrologic and geomorphic parameters. The proposed scheme provides a universal criterion that improves existing classification methods that depend solely on the sediment concentration for quantifying the runoff-to-debris flow transition relevant to landscape evolution studies and hazard assessments.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2023-01-242023
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1029/2022WR033242
GFZPOF: p4 T3 Restless Earth
GFZPOFWEITERE: p4 T5 Future Landscapes
OATYPE: Green Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Water Resources Research
Genre der Quelle: Zeitschrift, SCI, Scopus, oa ab 2024
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 59 (2) Artikelnummer: e2022WR033242 Start- / Endseite: - Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals484
Publisher: American Geophysical Union (AGU)
Publisher: Wiley