English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Statistical power of spatial earthquake forecast tests

Khawaja, M. A., Hainzl, S., Schorlemmer, D., Iturrieta, P. C., Bayona, J. A., Savran, W. H., Werner, M., Marzocchi, W. (2023): Statistical power of spatial earthquake forecast tests. - Geophysical Journal International, 233, 3, 2053-2066.
https://doi.org/10.1093/gji/ggad030

Item is

Files

show Files
hide Files
:
5015770.pdf (Publisher version), 4MB
Name:
5015770.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Khawaja, Muhammad Asim1, Author              
Hainzl, S.1, Author              
Schorlemmer, Danijel2, Author              
Iturrieta, Pablo Cristián2, Author              
Bayona, José A.3, Author
Savran, William H.3, Author
Werner, Maximilian3, Author
Marzocchi, Warner3, Author
Affiliations:
12.1 Physics of Earthquakes and Volcanoes, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146029              
22.6 Seismic Hazard and Risk Dynamics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146032              
3External Organizations, ou_persistent22              

Content

show
hide
Free keywords: Earthquake hazards, earthquake interaction, forecasting and prediction, Statistical seismology, Earthquake forecast testing, Statistical power analysis
 Abstract: The Collaboratory for the Study of Earthquake Predictability (CSEP) is an international effort to evaluate earthquake forecast models prospectively. In CSEP, one way to express earthquake forecasts is through a grid-based format: the expected number of earthquake occurrences within 0.1° × 0.1° spatial cells. The spatial distribution of seismicity is thereby evaluated using the Spatial test (S-test). The high-resolution grid combined with sparse and inhomogeneous earthquake distributions leads to a huge number of cells causing disparity in the number of cells, and the number of earthquakes to evaluate the forecasts, thereby affecting the statistical power of the S-test. In order to explore this issue, we conducted a global earthquake forecast experiment, in which we computed the power of the S-test to reject a spatially non-informative uniform forecast model. The S-test loses its power to reject the non-informative model when the spatial resolution is so high that every earthquake of the observed catalog tends to get a separate cell. Upon analysing the statistical power of the S-test, we found, as expected, that the statistical power of the S-test depends upon the number of earthquakes available for testing, e.g. with the conventional high-resolution grid for the global region, we would need more than 32 000 earthquakes in the observed catalog for powerful testing, which would require approximately 300 yr to record M ≥ 5.95. The other factor affecting the power is more interesting and new; it is related to the spatial grid representation of the forecast model. Aggregating forecasts on multi-resolution grids can significantly increase the statistical power of the S-test. Using the recently introduced Quadtree to generate data-based multi-resolution grids, we show that the S-test reaches its maximum power in this case already for as few as eight earthquakes in the test period. Thus, we recommend for future CSEP experiments the use of Quadtree-based multi-resolution grids, where available data determine the resolution.

Details

show
hide
Language(s): eng - English
 Dates: 2023-01-242023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1093/gji/ggad030
GFZPOF: p4 T3 Restless Earth
OATYPE: Green Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Geophysical Journal International
Source Genre: Journal, SCI, Scopus, ab 2024 OA-Gold
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 233 (3) Sequence Number: - Start / End Page: 2053 - 2066 Identifier: ISSN: 0956-540X
ISSN: 1365-246X
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals180
Publisher: Oxford University Press