English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  3D ionospheric imaging for space weather monitoring at low-latitudes

Prol, F., Camargo, P., Muella, M., Hoque, M., Hernández-Pajares, M., Ana, S., Bhuiyan, Z., Kaasalainen, S. (2023): 3D ionospheric imaging for space weather monitoring at low-latitudes, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-0363

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Prol, Fabricio1, Author
Camargo, Paulo1, Author
Muella, Marcio1, Author
Hoque, Mainul1, Author
Hernández-Pajares, Manuel1, Author
Ana, Souza1, Author
Bhuiyan, Zahidul1, Author
Kaasalainen, Sanna1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Three-dimensional (3D) ionospheric imaging at Low-Latitudes is challenging due to the high ionospheric variability and dynamics in the region. The region is characterized by the presence of the Equatorial Ionization Anomaly (EIA), plasma bubbles, layered structures, and strong vertical drifts upwards during the evening pre-reversal enhancement. Aiming to better understand the ionosphere at low latitudes, this study shows the latest developments conducted by the authors to map the region with 3D inversion algorithms based on Global Navigation Satellite Systems (GNSS), ionosondes, GNSS radio-occultation, and empirical models, such as the International Reference Ionosphere (IRI). We address the capabilities of the developed 3D imaging methods to disclose the main morphologies and dynamics of the ionospheric electron density in the region. Limitations are also discussed since data assimilation schemes are still ill-conditioned for a complete 3D reconstruction. Based on the experiments conducted by the authors, the main conclusions have outlined that better 3D representation of the ionosphere in the region of particular interest requires three main improvements: 1) denser GNSS networks on ground and space; 2) better representation by empirical models to be used as background to the inversion technique, mainly to better represent the plasmasphere, topside ionosphere, and during the pre-reversal enhancements; and 3) ionosphere sounding using GNSS or beacon like signals transmitted by Low Earth Orbit (LEO) satellites.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-0363
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -