English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Impact of spatial resolution on large-scale ice cover modeling of mountainous regions

Werner, H., Scherler, D., Ricarda, W., Guillaume, J. (2023): Impact of spatial resolution on large-scale ice cover modeling of mountainous regions, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1832

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Werner, Helen1, 2, Author              
Scherler, Dirk1, 2, Author              
Ricarda, Winkelmann1, Author
Guillaume, Jouvet1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              
23.3 Earth Surface Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146037              

Content

show
hide
Free keywords: -
 Abstract: For reconstructing paleoclimate or studying glacial isostatic effects on the Earth’s lithosphere, increasingly more studies focus on modeling the large-scale ice cover in mountainous regions over long time scales. However, balancing model complexity and the spatial extent with computational costs is challenging. Previous studies of large-scale ice cover simulation in mountain areas such as the European Alps, New Zealand, and the Tibetan Plateau, typically used 1-2 km spatial resolution. However, mountains are characterized by high peaks and steep slopes - topographic features that are crucial for glacier mass balance and dynamics, but poorly resolved in coarse resolution topography. The Instructed Glacier Model (IGM) is a novel 3D ice model equipped with a Convolutional Neural Network which is trained from high order ice models to simulate ice flow. This results in a significant acceleration of run times, and thereby opening the possibility of higher spatial resolution runs. We use IGM to model the glaciation of the European Alps with different resolutions (2 km, 1 km and 200 m) over a time period of 160,000 years. We apply a linear cooling rate to today’s climate until 6 °C colder to mimic ice age conditions. Preliminary results indicate systematic, resolution-related differences: At the beginning of cooling the 2 km resolution yields slightly more ice volume. However, this trend reverses after the large valleys are filled with thick ice. When the Alps are fully ice covered, we find up to 15% more ice volume in the higher resolution models.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-1832
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -