English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Antarctic Slope Current control on cross-slope heat transport

Aguiar, W., Morrison, A., Huneke, W., Hogg, A., England, M., Spence, P. (2023): Antarctic Slope Current control on cross-slope heat transport, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-3781

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Aguiar, Wilton1, Author
Morrison, Adele1, Author
Huneke, Wilma1, Author
Hogg, Andy1, Author
England, Matthew1, Author
Spence, Paul1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Ocean heat transport towards Antarctica directly drives the melting of Antarctic ice shelves, modulating sea level rise and the formation of Antarctic Bottom Water. A common dynamical assumption is that heat transport across the Antarctic continental slope is modulated by the strength of the Antarctic Slope Current (ASC), which is thought to act as a barrier to cross-slope heat transport. However, observations of the ASC are too scarce to investigate its relationship to poleward heat transport across large circumpolar spatial scales, or over long temporal scales. Also, until recently, ocean models lacked the spatial resolution required to accurately represent the ASC or the eddy heat transport onto the Antarctic shelf. In this study, we analyze the relationship between the ASC and the cross-slope heat transport in a circumpolar, eddy-rich ocean and sea ice simulation. We find that the local strength of the time-mean ASC is not a good predictor of local cross-slope heat transport, i.e., spatial variability in the ASC is not related to spatial variability in poleward heat transport. However, there is a relationship between ASC strength and cross-slope heat transport in the temporal domain. We quantify the strength of the relationship across different time scales (sub-seasonal, seasonal and interannual) and across varying model resolution (from 1/10º to 1/20º to 1/40º).

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-3781
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -