English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Earth radiation budget climate record composed of multiple satellite observations

Kato, S., Loeb, N., Rose, F., Thorsen, T., Rutan, D., Ham, S.-H., Doelling, D. (2023): Earth radiation budget climate record composed of multiple satellite observations, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4506

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Kato, Seiji1, Author
Loeb, Norman1, Author
Rose, Fred1, Author
Thorsen, Tyler1, Author
Rutan, David1, Author
Ham, Seung-Hee1, Author
Doelling, David1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: Effects of cloud diurnal cycle on top-of-atmosphere (TOA) and surface regional monthly mean irradiances, climatological mean, and anomalies are analyzed using CERES derived TOA irradiances and surface irradiances computed with MODIS derived cloud properties. Cloud properties derived from Terra and Aqua MODIS are sufficient to capture cloud diurnal cycle to compute regional monthly mean surface irradiances. While missing cloud diurnal cycle leads to a biased TOA and surface regional irradiances for regions with a strong cloud diurnal cycle, monthly regional TOA and surface anomalies derived from one sun-synchronous orbit agrees well with those derived from two sun-synchronous orbits. Based on these results, the algorithm to produce Edition 4.2 CERES EBAF product is developed. Regional TOA and surface climatological means derived from one sun-synchronous orbit are adjusted to match corresponding climatological means derived from Terra+Aqua observations. This climatological adjustment approach is used to merge the Terra only period to the Terra+Aqua period and to extend the Terra and Aqua record by merging NOAA20 observations. Two additional differences of Edition 4.2 EBAF algorithm to compute surface irradiances compared to the earlier version are: 1) no geostationary satellite derived cloud properties are used and 2) temperature and humidity from MERRA-2 instead of GEOIS-5.4.1 are used. Once surface monthly regional mean irradiances are compared with surface observations, the agreement is equivalent to the agreement with the earlier version. However, because surface irradiances are not affected by geostationary satellite artifacts, regional surface irradiance anomaly time series is significantly improved, especially for longwave irradiances.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-112023-07-11
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-4506
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -