English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  PickBlue: Seismic Phase Picking for Ocean Bottom Seismometers With Deep Learning

Bornstein, T., Lange, D., Münchmeyer, J., Woollam, J., Rietbrock, A., Barcheck, G., Grevemeyer, I., Tilmann, F. (2024): PickBlue: Seismic Phase Picking for Ocean Bottom Seismometers With Deep Learning. - Earth and Space Science, 11, 1, e2023EA003332.
https://doi.org/10.1029/2023EA003332

Item is

Files

show Files
hide Files
:
5024720.pdf (Publisher version), 5MB
Name:
5024720.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Bornstein, Thomas1, Author              
Lange, D.2, Author
Münchmeyer, J.1, Author              
Woollam, J.2, Author
Rietbrock, A.2, Author
Barcheck, G.2, Author
Grevemeyer, I.2, Author
Tilmann, Frederik1, Author              
Affiliations:
12.4 Seismology, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_30023              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Detecting phase arrivals and pinpointing the arrival times of seismic phases in seismograms is crucial for many seismological analysis workflows. For land station data, machine learning methods have already found widespread adoption. However, deep learning approaches are not yet commonly applied to ocean bottom data due to a lack of appropriate training data and models. Here, we compiled an extensive and labeled ocean bottom seismometer (OBS) data set from 15 deployments in different tectonic settings, comprising ∼90,000 P and ∼63,000 S manual picks from 13,190 events and 355 stations. We propose PickBlue, an adaptation of the two popular deep learning networks EQTransformer and PhaseNet. PickBlue joint processes three seismometer recordings in conjunction with a hydrophone component and is trained with the waveforms in the new database. The performance is enhanced by employing transfer learning, where initial weights are derived from models trained with land earthquake data. PickBlue significantly outperforms neural networks trained with land stations and models trained without hydrophone data. The model achieves a mean absolute deviation of 0.05 s for P-waves and 0.12 s for S-waves, and we apply the picker on the Hikurangi Ocean Bottom Tremor and Slow Slip OBS deployment offshore New Zealand. We integrate our data set and trained models into SeisBench to enable an easy and direct application in future deployments.

Details

show
hide
Language(s): eng - English
 Dates: 20232024
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2023EA003332
GFZPOF: p4 MESI
GFZPOFWEITERE: p4 T3 Restless Earth
OATYPE: Gold Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Earth and Space Science
Source Genre: Journal, SCI, Scopus, oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 11 (1) Sequence Number: e2023EA003332 Start / End Page: - Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/180712
Publisher: American Geophysical Union (AGU)
Publisher: Wiley