Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity

Kooistra, L., Berger, K., Brede, B., Graf, L. V., Aasen, H., Roujean, J.-L., Machwitz, M., Schlerf, M., Atzberger, C., Prikaziuk, E., Ganeva, D., Tomelleri, E., Croft, H., Reyes Muñoz, P., Garcia Millan, V., Darvishzadeh, R., Koren, G., Herrmann, I., Rozenstein, O., Belda, S., Rautiainen, M., Rune Karlsen, S., Figueira Silva, C., Cerasoli, S., Pierre, J., Tanır Kayıkçı, E., Halabuk, A., Tunc Gormus, E., Fluit, F., Cai, Z., Kycko, M., Udelhoven, T., Verrelst, J. (2024): Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity. - Biogeosciences, 21, 2, 473-511.
https://doi.org/10.5194/bg-21-473-2024

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
5025734.pdf (Verlagsversion), 8MB
Name:
5025734.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Kooistra, Lammert1, Autor
Berger, Katja2, Autor              
Brede, Benjamin3, Autor              
Graf, Lukas Valentin1, Autor
Aasen, Helge1, Autor
Roujean, Jean-Louis1, Autor
Machwitz, Miriam1, Autor
Schlerf, Martin1, Autor
Atzberger, Clement1, Autor
Prikaziuk, Egor1, Autor
Ganeva, Dessislava1, Autor
Tomelleri, Enrico1, Autor
Croft, Holly1, Autor
Reyes Muñoz, Pablo1, Autor
Garcia Millan, Virginia1, Autor
Darvishzadeh, Roshanak1, Autor
Koren, Gerbrand1, Autor
Herrmann, Ittai1, Autor
Rozenstein, Offer1, Autor
Belda, Santiago1, Autor
Rautiainen, Miina1, AutorRune Karlsen, Stein1, AutorFigueira Silva, Cláudio1, AutorCerasoli, Sofia1, AutorPierre, Jon1, AutorTanır Kayıkçı, Emine1, AutorHalabuk, Andrej1, AutorTunc Gormus, Esra1, AutorFluit, Frank1, AutorCai, Zhanzhang1, AutorKycko, Marlena1, AutorUdelhoven, Thomas1, AutorVerrelst, Jochem1, Autor mehr..
Affiliations:
1External Organizations, ou_persistent22              
21.2 Global Geomonitoring and Gravity Field, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146026              
31.4 Remote Sensing, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146028              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Vegetation productivity is a critical indicator of global ecosystem health and is impacted by human activities and climate change. A wide range of optical sensing platforms, from ground-based to airborne and satellite, provide spatially continuous information on terrestrial vegetation status and functioning. As optical Earth observation (EO) data are usually routinely acquired, vegetation can be monitored repeatedly over time, reflecting seasonal vegetation patterns and trends in vegetation productivity metrics. Such metrics include gross primary productivity, net primary productivity, biomass, or yield. To summarize current knowledge, in this paper we systematically reviewed time series (TS) literature for assessing state-of-the-art vegetation productivity monitoring approaches for different ecosystems based on optical remote sensing (RS) data. As the integration of solar-induced fluorescence (SIF) data in vegetation productivity processing chains has emerged as a promising source, we also include this relatively recent sensor modality. We define three methodological categories to derive productivity metrics from remotely sensed TS of vegetation indices or quantitative traits: (i) trend analysis and anomaly detection, (ii) land surface phenology, and (iii) integration and assimilation of TS-derived metrics into statistical and process-based dynamic vegetation models (DVMs). Although the majority of used TS data streams originate from data acquired from satellite platforms, TS data from aircraft and unoccupied aerial vehicles have found their way into productivity monitoring studies. To facilitate processing, we provide a list of common toolboxes for inferring productivity metrics and information from TS data. We further discuss validation strategies of the RS data derived productivity metrics: (1) using in situ measured data, such as yield; (2) sensor networks of distinct sensors, including spectroradiometers, flux towers, or phenological cameras; and (3) inter-comparison of different productivity metrics. Finally, we address current challenges and propose a conceptual framework for productivity metrics derivation, including fully integrated DVMs and radiative transfer models here labelled as “Digital Twin”. This novel framework meets the requirements of multiple ecosystems and enables both an improved understanding of vegetation temporal dynamics in response to climate and environmental drivers and enhances the accuracy of vegetation productivity monitoring.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2024-01-252024
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.5194/bg-21-473-2024
GFZPOF: p4 T5 Future Landscapes
GFZPOFCCA: p4 CARF RemSens
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Biogeosciences
Genre der Quelle: Zeitschrift, SCI, Scopus, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 21 (2) Artikelnummer: - Start- / Endseite: 473 - 511 Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals47
Publisher: Copernicus
Publisher: European Geosciences Union (EGU)