English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Machine Learning Based Modeling of Thermospheric Mass Density

Pan, Q., Xiong, C., Lühr, H., Smirnov, A., Huang, Y., Xu, C., Yang, X., Zhou, Y., Hu, Y. (2024): Machine Learning Based Modeling of Thermospheric Mass Density. - Space Weather, 22, 5, e2023SW003844.
https://doi.org/10.1029/2023SW003844

Item is

Files

show Files
hide Files
:
5026356.pdf (Publisher version), 5MB
Name:
5026356.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Pan, Qian1, Author
Xiong, C.1, Author
Lühr, H.2, Author              
Smirnov, Artem3, Author              
Huang, Yuyang1, Author
Xu, Chunyu1, Author
Yang, Xu1, Author
Zhou, Y.1, Author
Hu, Yang1, Author
Affiliations:
1External Organizations, ou_persistent22              
22.3 Geomagnetism, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146030              
32.7 Space Physics and Space Weather, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_2239888              

Content

show
hide
Free keywords: -
 Abstract: In this study, we propose a machine learning based approach to construct an empirical model of thermospheric mass densities, based on the MultiLayer Perceptron and bi-directional Long Short-Term Memory for ensemble learning model (MBiLE). The MBiLE model was trained by using only the thermospheric mass density from Swarm C satellite at ∼450 km altitude. To assess the performance of the MBiLE model, the model predictions were compared with observations from several satellites, namely, the Swarm C, the Challenging Minisatellite Payload (CHAMP) and the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellites. The determination coefficients (R2) for the three satellites are 0.98, 0.99, and 0.98, respectively. The MBiLE model predicts the thermospheric mass density well not only at Swarm C altitude but also at lower altitudes. Earlier empirical models based on multivariate least-square-fitting approach failed to achieve this good altitude generalization (e.g., Liu et al., 2013, https://doi.org/10.1002/jgra.50144; Xiong et al., 2018a, https://doi.org/10.5194/angeo-2018-25). Further tests have been made by checking the MBiLE model prediction deviations in relation to magnetic local time, day of year, solar flux level, and magnetic activities. No obvious dependences are found for these parameters. Comparing with the NRLMSIS-2.0 model, the MBiLE model improves prediction accuracy by 91%, 66%, and 56% at the three satellites altitudes. The results indicate that the MBiLE model has the ability to predict well the thermospheric mass density over a wide altitude range, for example, from 224 to 528 km, offering potential for atmospheric research applications.

Details

show
hide
Language(s):
 Dates: 2024-04-252024
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1029/2023SW003844
GFZPOF: p4 T1 Atmosphere
OATYPE: Gold Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Space Weather
Source Genre: Journal, SCI, Scopus, oa ab 2020
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 22 (5) Sequence Number: e2023SW003844 Start / End Page: - Identifier: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals459
Publisher: American Geophysical Union (AGU)
Publisher: Wiley