Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Estimation of above ground biomass of mangrove forest plot using terrestrial laser scanner

Kumar Adimoolam, Y., Pillai, N. D., Lakshmanan, G., Mishra, D., Kumar Dadhwal, V. (2025): Estimation of above ground biomass of mangrove forest plot using terrestrial laser scanner. - Egyptian Journal of Remote Sensing and Space Science, 28, 1, 1-11.
https://doi.org/10.1016/j.ejrs.2024.11.002

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
5029119.pdf (Verlagsversion), 14MB
Name:
5029119.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Kumar Adimoolam, Yeshwanth1, Autor
Pillai, Nithin Dinesan2, Autor              
Lakshmanan, Gnanappazham1, Autor
Mishra, Deepak1, Autor
Kumar Dadhwal, Vinay1, Autor
Affiliations:
1External Organizations, ou_persistent22              
21.4 Remote Sensing, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146028              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Above-ground biomass; Mangroves; Pneumatophores; Terrestrial LiDAR; Machine learning; Random forest
 Zusammenfassung: Above-Ground Biomass (AGB) is an important parameter in the conservation of mangrove ecosystem owing to their ecological and economic benefits. LiDAR technologies in forest studies have become popular, due to its highly accurate 3D spatial data acquisition. In this study, we propose an end-to-end framework for estimating AGB of mangroves from Terrestrial Laser Scanner (TLS) point clouds. The framework includes pre-processing of data, segmenting the wood and foliage at tree level using Weighted Random Forest (WRF) classifier and constructing Quantitative Structure Model (QSM) of the wooden components to estimate its biomass. The flow was extended to AGB estimation of 33 x 33 m plot by integrating tree level framework. The study also finds a unique solution to estimate the contribution of pneumatophores in the AGB. Segmentation of wood/foliage of tree point cloud using WRF yielded better results with an increment of 15.27 % in Balanced accuracy, 0.2 of Cohen’s Kappa coefficient, and 7.45 % in F1score than RF classifier. AGB estimation of mangroves using our approach using TLS data is 47.54 T/ha which has a mean bias of 0.0044 T/ha and RMS variation of 0.026 T/ ha when compared with the allometric methods. A Breadth-first graph-search segmentation approach was used to count the pneumatophores, aerial roots seen in few mangrove species (R2 = 0.94 with manual counting) and estimate its contribution to AGB of mangroves which is first of its kind using TLS point cloud. This outcome could also aid future studies in modeling the underlying root network and estimating the below-ground biomass.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 20242025
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.ejrs.2024.11.002
GFZPOF: p4 T5 Future Landscapes
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Egyptian Journal of Remote Sensing and Space Science
Genre der Quelle: Zeitschrift, SCI, Scopus, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 28 (1) Artikelnummer: - Start- / Endseite: 1 - 11 Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/20241129
Publisher: Elsevier