Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A non-stationary climate-informed weather generator for assessing future flood risks

Nguyen, D., Vorogushyn, S., Nissen, K., Brunner, L., Merz, B. (2024): A non-stationary climate-informed weather generator for assessing future flood risks. - Advances in Statistical Climatology, Meteorology and Oceanography, 10, 195-216.
https://doi.org/10.5194/ascmo-10-195-2024

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
5029123.pdf (Verlagsversion), 10MB
Name:
5029123.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Nguyen, D.1, Autor              
Vorogushyn, Sergiy1, Autor              
Nissen, Katrin2, Autor
Brunner, Lukas2, Autor
Merz, B.1, Autor              
Affiliations:
14.4 Hydrology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146048              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We present a novel non-stationary regional weather generator (nsRWG) based on an auto-regressive process and marginal distributions conditioned on climate variables. We use large-scale circulation patterns as a latent variable and regional daily mean temperature as a covariate for marginal precipitation distributions to account for dynamic and thermodynamic changes in the atmosphere, respectively. Circulation patterns are classified using ERA5 reanalysis mean sea level pressure fields. We set up the nsRWG for the central European region using data from the E-OBS dataset, covering major river basins in Germany and riparian countries. The nsRWG is meticulously evaluated, showing good results in reproducing at-site and spatial characteristics of precipitation and temperature. Using time series of circulation patterns and the regional daily mean temperature derived from general circulation models (GCMs), we inform the nsRWG about the projected future climate. In this approach, we utilize GCM output variables, such as pressure and temperature, which are typically more accurately simulated by GCMs than precipitation. In an exemplary application, the nsRWG statistically downscales precipitation from nine selected models from the Coupled Model Intercomparison Project Phase 6 (CMIP6), generating long synthetic but spatially and temporally consistent weather series. The results suggest an increase in extreme precipitation over the German basins, aligning with previous regional analyses. The nsRWG offers a key benefit for hydrological impact studies by providing long-term (thousands of years) consistent synthetic weather data indispensable for the robust estimation of probability changes in hydrologic extremes such as floods.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2024-11-262024
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.5194/ascmo-10-195-2024
GFZPOF: p4 T5 Future Landscapes
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advances in Statistical Climatology, Meteorology and Oceanography
Genre der Quelle: Zeitschrift, Scopus, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 10 Artikelnummer: - Start- / Endseite: 195 - 216 Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/202411291
Publisher: Copernicus