English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Coordination between deformation, precipitation, and erosion during orogenic growth

Yuan, X., Li, Y., Brune, S., Li, K., Michael, P., Wolf, S. (2024): Coordination between deformation, precipitation, and erosion during orogenic growth. - Nature Communications, 15, 10362.
https://doi.org/10.1038/s41467-024-54690-4

Item is

Files

show Files
hide Files
:
5029186.pdf (Publisher version), 5MB
Name:
5029186.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Yuan, Xiaoping1, Author
Li, Yuqiang1, Author
Brune, Sascha2, Author              
Li, Kai2, Author              
Michael, Pons2, Author              
Wolf, Sebastian3, Author              
Affiliations:
1External Organizations, ou_persistent22              
22.5 Geodynamic Modelling, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146031              
34.7 Earth Surface Process Modelling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_1729888              

Content

show
hide
Free keywords: -
 Abstract: Crustal thickening associated with orogenic growth elevates topography, causing orographic enhancement of precipitation, which in turn facilitates local erosion and possibly intensifies localization of deformation. How these three processes—deformation, precipitation, and erosion—coordinate during orogenic growth remains unknown. Here, we present a numerical model where tectonics, surface processes, and orographic precipitation are tightly coupled, and explore the impact on low, intermediate, and high erodibility orogens. We show that, for intermediate erodibility models, rock uplift rates and precipitation rates correlate well with erosion rates during the formation of orogenic plateaus with high correlation coefficients of ~0.9 between rock uplift and erosion rates, and ~0.8 between precipitation and erosion rates. We demonstrate a cyclicity of correlation evolution among uplift, precipitation, and erosion rates through the development of new faults propagating outward. These results shed insights into the relative tectonic or climatic control on erosion in active orogens (e.g., Himalayas, Central Andes, and Southern Alps of New Zealand), and provide a plausible explanation for several conflicting data and interpretations in the Himalayas, which depend on the stage of maturity of the newest fault and the relative locations to old faults.

Details

show
hide
Language(s): eng - English
 Dates: 2024-11-282024
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1038/s41467-024-54690-4
GFZPOF: p4 T5 Future Landscapes
GFZPOFWEITERE: p4 T3 Restless Earth
OATYPE: Hybrid Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
Source Genre: Journal, SCI, Scopus, oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 15 Sequence Number: 10362 Start / End Page: - Identifier: ISSN: 2041-1723
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals354
Publisher: Springer Nature