English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Chapter 4: Data Analysis and Exploration with Computational Approaches

Authors

Wichert,  Viktoria
External Organizations;

Bouwer,  Laurens M.
External Organizations;

Abraham,  Nicola
External Organizations;

Brix,  Holger
External Organizations;

Callies,  Ulrich
External Organizations;

González Ávalos,  Everardo
External Organizations;

Marien,  Lennart Christopher
External Organizations;

Matthias,  Volker
External Organizations;

Michaelis,  Patrick
External Organizations;

/persons/resource/dara

Rabe,  Daniela
1.4 Remote Sensing, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Rechid,  Diana
External Organizations;

Ruhnke,  Roland
External Organizations;

Scharun,  Christian
External Organizations;

Valizadeh,  Mahyar
External Organizations;

Vlasenko,  Andrey
External Organizations;

/persons/resource/castell

Graf zu Castell-Rüdenhausen,  Wolfgang
5.0 Geoinformation, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Wichert, V., Bouwer, L. M., Abraham, N., Brix, H., Callies, U., González Ávalos, E., Marien, L. C., Matthias, V., Michaelis, P., Rabe, D., Rechid, D., Ruhnke, R., Scharun, C., Valizadeh, M., Vlasenko, A., Graf zu Castell-Rüdenhausen, W. (2022): Chapter 4: Data Analysis and Exploration with Computational Approaches. - In: Bouwer, L. M., Dransch, D., Ruhnke, R., Rechid, D., Frickenhaus, S., Greinert, J. (Eds.), Integrating Data Science and Earth Science Challenges and Solutions, (SpringerBriefs in Earth System Sciences), Cham : Springer International Publishing, 29-54.
https://doi.org/10.1007/978-3-030-99546-1_4


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5013594
Abstract
Artificial intelligence and machine learning (ML) methods are increasinglyappliedinEarthsystemresearch,forimprovingdataanalysis,andmodelperformance,andeventuallysystemunderstanding.IntheDigitalEarthproject,severalML approaches have been tested and applied, and are discussed in this chapter. These include data analysis using supervised learning and classification for detection of river levees and underwater ammunition; process estimation of methane emissions andforenvironmentalhealth;point-to-spaceextrapolationofvaryingobservedquantities; anomaly and event detection in spatial and temporal geoscientific datasets. We present the approaches and results, and finally, we provide some conclusions on the broad applications of these computational data exploration methods and approaches.