English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Compressibility and thermal expansion of magnesium phosphates

Authors

Leyx,  Catherine
External Organizations;

Schmid-Beurmann,  Peter
External Organizations;

Brunet,  Fabrice
External Organizations;

Chopin,  Christian
External Organizations;

/persons/resource/lathe

Lathe,  Christian
3.6 Chemistry and Physics of Earth Materials, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)

5026267.pdf
(Publisher version), 643KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Leyx, C., Schmid-Beurmann, P., Brunet, F., Chopin, C., Lathe, C. (2024): Compressibility and thermal expansion of magnesium phosphates. - European Journal of Mineralogy, 36, 3, 417-431.
https://doi.org/10.5194/ejm-36-417-2024


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5026267
Abstract
The ambient-temperature compressibility and room-pressure thermal expansion of two Mg3(PO4)2 polymorphs (farringtonite=Mg3(PO4)2-I, with 5- and 6-fold coordinated Mg, and chopinite=“Mgsarcopside”=[6]Mg3(PO4)2-II), three Mg2PO4OH polymorphs (althausite, hydroxylwagnerite and ɛ- Mg2PO4OH, all with [5]Mg and [6]Mg) and phosphoellenbergerite ([6]Mg) were measured on synthetic powders using a synchrotron-based multi-anvil apparatus to 5.5 GPa and a laboratory high-temperature diffractometer, with whole-pattern fitting procedures. Bulk moduli range from 64.5 GPa for althausite to 88.4 GPa for hydroxylwagnerite, the high-pressure Mg2PO4OH polymorph. Chopinite, based on an olivine structure with ordered octahedral vacancies (K0=81.6 GPa), and phosphoellenbergerite, composed of chains of face-sharing octahedra (K0=86.4 GPa), are distinctly more compressible than their homeotypical silicate (127 and 133 GPa, respectively). The compressibility anisotropy is the highest for chopinite and the lowest for phosphoellenbergerite. First-order parameters of quadratic thermal expansions range from v1=2.19x10-5K-1 for ɛ-Mg2PO4OH to v1=3.58x10-5K-1 for althausite. Phosphates have higher thermal-expansion coefficients than the homeotypical silicates. Thermal anisotropy is the highest for farringtonite and the lowest for hydroxylwagnerite and chopinite. These results set the stage for a thermodynamic handling of phase-equilibrium data obtained up to 3 GPa and 1000°C in the MgO–P2O5–H2O and MgO–Al2O3–P2O5–H2O systems.