Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Buoy‐Based Detection of Low‐Energy Cosmic‐Ray Neutrons to Monitor the Influence of Atmospheric, Geomagnetic, and Heliospheric Effects

Urheber*innen

Schrön,  Martin
External Organizations;
TERENO, Deutsches GeoForschungsZentrum;

/persons/resource/drasche

Rasche,  Daniel
4.4 Hydrology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
TERENO, Deutsches GeoForschungsZentrum;

Weimar,  Jannis
External Organizations;
TERENO, Deutsches GeoForschungsZentrum;

Köhli,  Markus
External Organizations;
TERENO, Deutsches GeoForschungsZentrum;

Herbst,  Konstantin
External Organizations;
TERENO, Deutsches GeoForschungsZentrum;

Boehrer,  Bertram
External Organizations;
TERENO, Deutsches GeoForschungsZentrum;

Hertle,  Lasse
External Organizations;
TERENO, Deutsches GeoForschungsZentrum;

Kögler,  Simon
External Organizations;
TERENO, Deutsches GeoForschungsZentrum;

Zacharias,  Steffen
External Organizations;
TERENO, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5026656.pdf
(Verlagsversion), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schrön, M., Rasche, D., Weimar, J., Köhli, M., Herbst, K., Boehrer, B., Hertle, L., Kögler, S., Zacharias, S. (2024): Buoy‐Based Detection of Low‐Energy Cosmic‐Ray Neutrons to Monitor the Influence of Atmospheric, Geomagnetic, and Heliospheric Effects. - Earth and Space Science, 11, 6, e2023EA003483.
https://doi.org/10.1029/2023EA003483


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5026656
Zusammenfassung
Cosmic radiation near the Earth's surface is influenced by solar activity, atmospheric conditions, and changes of nearby soil moisture or snow. To better understand how cosmic‐ray neutron measurements should be corrected for meteorological effects, we operated a detector for low‐energy neutrons in a buoy on a lake in Germany for 5 months in 2014. Since the water content in the surroundings is constant, we were able to isolate the signal from almost any ground‐related disturbances. With this instrument, we challenged traditional and recent theories on the neutron response to water, air humidity, and to reference data from high‐energy neutron monitors around the world. We found that in some cases, recent theories showed superior performance over traditional approaches. We also found a stronger response of the neutrons detected by the buoy to a major solar event than was observed by traditional neutron monitors. The concept of a neutron detector on a lake could be useful as a reference station for similar land‐side detectors and help provide more reliable soil moisture products.