Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

On The Design of Cross-Hole Resistivity Arrays for High-Resolution and Cost-Efficient Storage Reservoir Monitoring

Urheber*innen
/persons/resource/fwagner

Wagner,  F.
CGS Centre for Geological Storage, Geoengineering Centres, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Deismann,  N.
External Organizations;

/persons/resource/conny

Schmidt-Hattenberger,  Cornelia
CGS Centre for Geological Storage, Geoengineering Centres, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Chalaturnyk,  R.
External Organizations;

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wagner, F., Deismann, N., Schmidt-Hattenberger, C., Chalaturnyk, R. (2013): On The Design of Cross-Hole Resistivity Arrays for High-Resolution and Cost-Efficient Storage Reservoir Monitoring - Draft Program, 3rd Helmholtz-Alberta Initiative (HAI) Science Forum (Edmonton, Canada 2013).


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_328669
Zusammenfassung
The mechanical properties of cement paste are largely dependent on the microstructure. Also, microstructure play an important role in durability since most of durability problems depend on pore-properties and microstructure modeling can be used to study the transport properties of cementitious systems. In this study, μic (A platform for modeling the hydration of cements) has been used to investigate hydration kinetics of cement and to model the microstructural evolution of hydrating cement paste under downhole conditions. It was found that many factors effect on microstructure evolution as chemical composition, particle size distribution and degree of hydration. The outputs from the model are the microstructures evolution at each step of the hydration. The microstructural information obtained from the simulation can be used to investigate mechanical and transport properties of the cement paste. Finally, the microstructure evolution obtained for μic and homogenization modeling approaches are used to predict the bulk and shear moduli evolutions of cement paste.