Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Manual of the Tecplot 360 Add-on GeoStress v2.0

Urheber*innen
/persons/resource/heidbach

Heidbach,  O.
WSM - World Stress Map Reports, Deutsches GeoForschungsZentrum;
2.6 Seismic Hazard and Risk Dynamics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/mziegler

Ziegler,  M.
WSM - World Stress Map Reports, Deutsches GeoForschungsZentrum;
2.6 Seismic Hazard and Risk Dynamics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/stro

Stromeyer,  D.
WSM - World Stress Map Reports, Deutsches GeoForschungsZentrum;
2.6 Seismic Hazard and Risk Dynamics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen

https://doi.org/10.5880/wsm.2020.001
(Ergänzendes Material)

https://doi.org/10.2312/wsm.2017.001
(Ergänzendes Material)

Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Heidbach, O., Ziegler, M., Stromeyer, D. (2020): Manual of the Tecplot 360 Add-on GeoStress v2.0, (WSM Technical Report ; 20-01), Potsdam : GFZ German Research Centre for Geosciences, 61 p.
https://doi.org/10.2312/wsm.2020.001


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5004238
Zusammenfassung
For the visualization and analysis of the stress field from 3D thermo-hydro-mechanical (THM) numerical model results two main technical steps are necessary. First, one has to derive from the six independent components of the 3D stress tensor scalar and vector values such as the orientation and magnitude of the maximum and minimum horizontal stress, stress ratios, or the differential stress. It is also of great interest to display e.g. the normal and shear stress with respect to an arbitrarily given surface. Second, an appropriate geometry should be given such as cross sections, profile e.g. for borehole pathways or surfaces on which the model results and further derived values are interpolated. This includes also the three field variables temperature, pore pressure and the displacement vector. To facilitate and automate these steps the Add-on GeoStress for the professional visualization software Tecplot 360 EX has been programmed. Besides the aforementioned values derived from the stress tensor the tool also allows to calculate the values of Coulomb Failure Stress (CFS), Slip and Dilation tendency (ST and DT) and Fracture Potential (FP). GeoStress also estimates kinematic variables such as horizontal slip, dip slip, rake vector of faults that are implemented as contact surfaces in the geomechanical-numerical model as well as the true vertical depth (TVD). Furthermore, the Add-on can import surface and polyline geometries and interpolates on these all available stress parameter. This technical report describes the visualization tool with examples using 3D geomechanical-numerical model results from the finite element software Abaqus v2019. It also presents a number of special features of Tecplot 360 EX in combination with GeoStress that allow a professional and efficient analysis. We also address now the usage GeoStress with PyTecplot which is a powerful tool to automize the analysis. The Add-on as well as the example and input files used in this manual is published by Stromeyer et al. (2020) and the table below gives an overview of the files with a short explanation as they appear in the manual.