Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Revisiting the Fault Locking of the Central Himalayan Thrust with a Viscoelastic Earthquake-Cycle Deformation Model

Urheber*innen

Diao,  Faqi
External Organizations;

/persons/resource/wang

Wang,  R.
2.1 Physics of Earthquakes and Volcanoes, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Zhu,  Yage
External Organizations;

Xiong,  Xiong
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Diao, F., Wang, R., Zhu, Y., Xiong, X. (2022): Revisiting the Fault Locking of the Central Himalayan Thrust with a Viscoelastic Earthquake-Cycle Deformation Model. - Seismological Research Letters, 93, 1, 193-200.
https://doi.org/10.1785/0220200310


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5009659
Zusammenfassung
Based on a viscoelastic earthquake‐cycle deformation model, we revisit the fault locking of the central Himalayan thrust using geodetic data acquired in the past three decades. By incorporating the viscoelastic relaxation effect induced by stress buildup and release, our viscoelastic model is capable of explaining the far‐field observation with similar fault locking width obtained in previous studies. Elastic models underestimate the far‐field deformation and consequently underestimate the fault slip rate by attributing the far‐field deformation to stable intraplate deformation. A steady‐state viscosity of ∼1019  Pa⋅s is required for the lower crust beneath south Tibet to best fit the crustal velocity. The optimal slip rate and locking width of the central Main Himalayan Thrust are estimated to 18.8 ± 1.6 mm/a and 85 ± 2.1 km, respectively. The inferred fault locking width, along with the down‐dip rupture extension of the 2015 Gorkha earthquake, agrees well with the identified mid‐crustal ramp, which leads to an interpretation that the fault geometry of the central Himalayan thrust plays an important role on fault kinematics. Our results highlight that viscoelastic relaxation during the earthquake cycle should be incorporated for robust estimation of fault locking parameters and reasonable data fitting.