Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Limited Earthquake Interaction During a Geothermal Hydraulic Stimulation in Helsinki, Finland

Urheber*innen
/persons/resource/kwiatek

Kwiatek,  G.
4.2 Geomechanics and Scientific Drilling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/patricia

Martinez Garzon,  P.
4.2 Geomechanics and Scientific Drilling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Davidsen,  Jörn
External Organizations;

/persons/resource/pmalin

Malin,  Peter
0 Pre-GFZ, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Karjalainen,  Aino
External Organizations;

/persons/resource/bohnhoff

Bohnhoff,  M.
4.2 Geomechanics and Scientific Drilling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/dre

Dresen,  G.
4.2 Geomechanics and Scientific Drilling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5013233.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kwiatek, G., Martinez Garzon, P., Davidsen, J., Malin, P., Karjalainen, A., Bohnhoff, M., Dresen, G. (2022): Limited Earthquake Interaction During a Geothermal Hydraulic Stimulation in Helsinki, Finland. - Journal of Geophysical Research: Solid Earth, 127, 9, e2022JB024354.
https://doi.org/10.1029/2022JB024354


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5013233
Zusammenfassung
We investigate induced seismicity associated with a hydraulic stimulation campaign performed in 2020 in the 5.8 km deep geothermal OTN-2 well near Helsinki, Finland as part of the St1 Deep Heat project. A total of 2,875 m3 of fresh water was injected during 16 days at well-head pressures <70 MPa and with flow rates between 400 and 1,000 L/min. The seismicity was monitored using a high-resolution seismic network composed of 10 borehole geophones surrounding the project site and a borehole array of 10 geophones located in adjacent OTN-3 well. A total of 6,121 induced earthquakes with local magnitudes urn:x-wiley:21699313:media:jgrb55848:jgrb55848-math-0001 were recorded during and after the stimulation campaign. The analyzed statistical parameters include magnitude-frequency b-value, interevent time and interevent time ratio, as well as magnitude correlations. We find that the b-value remained stationary for the entire injection period suggesting limited stress build-up or limited fracture network coalescence in the reservoir. The seismicity during the stimulation neither shows signatures of magnitude correlations, nor temporal clustering or anticlustering beyond those arising from varying injection rates. The interevent time statistics are characterized by a Poissonian time-varying distribution. The calculated parameters indicate no earthquake interaction. Focal mechanisms suggest that the injection activated a spatially distributed network of similarly oriented fractures. The seismicity displays stable behavior with no signatures pointing toward a runaway event. The cumulative seismic moment is proportional to the cumulative hydraulic energy and the maximum magnitude is controlled by injection rate. The performed study provides a base for implementation of time-dependent probabilistic seismic hazard assessment for the project site.