English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Agricultural drought over water-scarce Central Asia aggravated by internal climate variability

Authors

Jiang,  Jie
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Zhou,  Tianjun
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Jiang, J., Zhou, T. (2023): Agricultural drought over water-scarce Central Asia aggravated by internal climate variability, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4125


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5021564
Abstract
A severe agricultural drought swept Central Asia in 2021, causing mass die-offs of crops and livestock. The anthropogenic contribution to declines in soil moisture in this region over recent decades has remained unclear. Here we show from analysis of large ensemble simulations that the aggravation of agricultural droughts over southern Central Asia since 1992 can be attributed to both anthropogenic forcing and internal variability associated with the Interdecadal Pacific Oscillation (IPO). Although the negative-to-positive phase transition of IPO before 1992 offset human-induced soil moisture decline, we find that the positive-to-negative phase transition thereafter has doubled the externally forced rate of drying in the early growing season. Human-induced soil moisture loss will probably be further aggravated in the following century due to warming, albeit with increasing precipitation, and our simulations project that this trend will not be counterbalanced by the IPO phase change. Instead, this internal variability could modulate drying rates in the near term with an amplitude of −2 (+2) standard deviation of the IPO trend projected to amplify (weaken) the externally forced decrease in surface soil moisture by nearly 75% (60%). The findings highlight the need for the interplay between anthropogenic forcing and the natural variability of the IPO to be considered by policymakers in this climate-sensitive region.