English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Rift-induced disruption of cratonic keels drives kimberlite volcanism

Authors

Gernon,  Thomas M.
External Organizations;

Jones,  Stephen M.
External Organizations;

/persons/resource/brune

Brune,  Sascha
2.5 Geodynamic Modelling, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Hincks,  Thea K.
External Organizations;

Palmer,  Martin R.
External Organizations;

Schumacher,  John C.
External Organizations;

Primiceri,  Rebecca M.
External Organizations;

Field,  Matthew
External Organizations;

Griffin,  William L.
External Organizations;

O’Reilly,  Suzanne Y.
External Organizations;

Keir,  Derek
External Organizations;

Spencer,  Christopher J.
External Organizations;

Merdith,  Andrew S.
External Organizations;

/persons/resource/acglerum

Glerum,  A.
2.5 Geodynamic Modelling, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
3.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Gernon, T. M., Jones, S. M., Brune, S., Hincks, T. K., Palmer, M. R., Schumacher, J. C., Primiceri, R. M., Field, M., Griffin, W. L., O’Reilly, S. Y., Keir, D., Spencer, C. J., Merdith, A. S., Glerum, A. (2023): Rift-induced disruption of cratonic keels drives kimberlite volcanism. - Nature, 620, 344-350.
https://doi.org/10.1038/s41586-023-06193-3


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5022209
Abstract
Kimberlites are volatile-rich, occasionally diamond-bearing magmas that have erupted explosively at Earth’s surface in the geologic past1,2,3. These enigmatic magmas, originating from depths exceeding 150 km in Earth’s mantle1, occur in stable cratons and in pulses broadly synchronous with supercontinent cyclicity4. Whether their mobilization is driven by mantle plumes5 or by mechanical weakening of cratonic lithosphere4,6 remains unclear. Here we show that most kimberlites spanning the past billion years erupted about 30 million years (Myr) after continental breakup, suggesting an association with rifting processes. Our dynamical and analytical models show that physically steep lithosphere–asthenosphere boundaries (LABs) formed during rifting generate convective instabilities in the asthenosphere that slowly migrate many hundreds to thousands of kilometres inboard of rift zones. These instabilities endure many tens of millions of years after continental breakup and destabilize the basal tens of kilometres of the cratonic lithosphere, or keel. Displaced keel is replaced by a hot, upwelling mixture of asthenosphere and recycled volatile-rich keel in the return flow, causing decompressional partial melting. Our calculations show that this process can generate small-volume, low-degree, volatile-rich melts, closely matching the characteristics expected of kimberlites1,2,3. Together, these results provide a quantitative and mechanistic link between kimberlite episodicity and supercontinent cycles through progressive disruption of cratonic keels.