Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Learning the Deep and the Shallow: Deep-Learning-Based Depth Phase Picking and Earthquake Depth Estimation

Urheber*innen
/persons/resource/munchmej

Münchmeyer,  J.
2.4 Seismology, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/saul

Saul,  Joachim
2.4 Seismology, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/tilmann

Tilmann,  Frederik
2.4 Seismology, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5025323.pdf
(Postprint), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Münchmeyer, J., Saul, J., Tilmann, F. (2024): Learning the Deep and the Shallow: Deep-Learning-Based Depth Phase Picking and Earthquake Depth Estimation. - Seismological Research Letters, 95, 3, 1543-1557.
https://doi.org/10.1785/0220230187


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5025323
Zusammenfassung
Automated teleseismic earthquake monitoring is an essential part of global seismicity analysis. Although constraining epicenters in an automated fashion is an established technique, constraining event depths is substantially more difficult. One solution to this challenge is teleseismic depth phases, but these can currently not be identified precisely by automatic detection methods. Here, we propose two deep‐learning models, DepthPhaseTEAM and DepthPhaseNet, to detect and pick depth phases. For training the models, we create a dataset based on the ISC‐EHB bulletin—a high‐quality catalog with detailed phase annotations. We show how backprojecting the predicted phase arrival probability curves onto the depth axis yields accurate estimates of earthquake depth. Furthermore, we show how a multistation model, DepthPhaseTEAM, leads to better and more consistent predictions than the single‐station model, DepthPhaseNet. To allow direct application of our models, we integrate them within the SeisBench library.