English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Permafrost Carbon: Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems

Authors

Treat,  Claire C.
External Organizations;

Virkkala,  Anna‐Maria
External Organizations;

Burke,  Eleanor
External Organizations;

Bruhwiler,  Lori
External Organizations;

Chatterjee,  Abhishek
External Organizations;

Fisher,  Joshua B.
External Organizations;

Hashemi,  Josh
External Organizations;

Parmentier,  Frans‐Jan W.
External Organizations;

Rogers,  Brendan M.
External Organizations;

Westermann,  Sebastian
External Organizations;

Watts,  Jennifer D.
External Organizations;

Blanc‐Betes,  Elena
External Organizations;

Fuchs,  Matthias
External Organizations;

Kruse,  Stefan
External Organizations;

Malhotra,  Avni
External Organizations;

Miner,  Kimberley
External Organizations;

Strauss,  Jens
External Organizations;

Armstrong,  Amanda
External Organizations;

Epstein,  Howard E.
External Organizations;

Gay,  Bradley
External Organizations;

Goeckede,  Mathias
External Organizations;

/persons/resource/akalhori

Kalhori,  Aram
1.4 Remote Sensing, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Kou,  Dan
External Organizations;

Miller,  Charles E.
External Organizations;

Natali,  Susan M.
External Organizations;

Oh,  Youmi
External Organizations;

Shakil,  Sarah
External Organizations;

Sonnentag,  Oliver
External Organizations;

Varner,  Ruth K.
External Organizations;

Zolkos,  Scott
External Organizations;

Schuur,  Edward A.G.
External Organizations;

Hugelius,  Gustaf
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)

5025578.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Treat, C. C., Virkkala, A., Burke, E., Bruhwiler, L., Chatterjee, A., Fisher, J. B., Hashemi, J., Parmentier, F. W., Rogers, B. M., Westermann, S., Watts, J. D., Blanc‐Betes, E., Fuchs, M., Kruse, S., Malhotra, A., Miner, K., Strauss, J., Armstrong, A., Epstein, H. E., Gay, B., Goeckede, M., Kalhori, A., Kou, D., Miller, C. E., Natali, S. M., Oh, Y., Shakil, S., Sonnentag, O., Varner, R. K., Zolkos, S., Schuur, E. A., Hugelius, G. (2024): Permafrost Carbon: Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems. - Journal of Geophysical Research: Biogeosciences, 129, 3, e2023JG007638.
https://doi.org/10.1029/2023JG007638


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5025578
Abstract
Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan-Arctic permafrost maps, an increase in terrestrial measurement sites for CO2 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process-based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2 sink with lower net CO2 uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO2 sink was located in western Canada (median: −52 g C m−2 y−1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m−2 y−1). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH4 m−2 y−1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year-round CO2 and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non-growing season emissions and disturbance effects.