Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Moment tensor inversion of mining-induced seismic events and forward modeling of critical fault slip to prevent rockbursts

Urheber*innen

Song,  Jiefang
External Organizations;

Lu,  Caiping
External Organizations;

/persons/resource/zang

Zang,  Arno
2.6 Seismic Hazard and Risk Dynamics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Elsworth,  Derek
External Organizations;

Zhang,  Xiufeng
External Organizations;

Qi,  Qingxin
External Organizations;

Song,  Chunhui
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Song, J., Lu, C., Zang, A., Elsworth, D., Zhang, X., Qi, Q., Song, C. (2024 online): Moment tensor inversion of mining-induced seismic events and forward modeling of critical fault slip to prevent rockbursts. - Journal of Rock Mechanics and Geotechnical Engineering.
https://doi.org/10.1016/j.jrmge.2024.07.001


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5027068
Zusammenfassung
In this study, we employed Bayesian inversion coupled with the summation-by-parts and simultaneous-approximation-term (SBP-SAT) forward simulation method to elucidate the mechanisms behind mining-induced seismic events caused by fault slip and their potential effects on rockbursts. Through Bayesian inversion, it is determined that the sources near fault FQ14 have a significant shear component. Additionally, we analyzed the stress and displacement fields of high-energy events, along with the hypocenter distribution of aftershocks, which aided in identifying the slip direction of the critically stressed fault FQ14. We also performed forward modeling to capture the complex dynamics of fault slip under varying friction laws and shear fracture modes. The selection of specific friction laws for fault slip models was based on their ability to accurately replicate observed slip behavior under various external loading conditions, thereby enhancing the applicability of our findings. Our results suggest that the slip behavior of fault FQ14 can be effectively understood by comparing different scenarios.