Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Archaean green-light environments drove the evolution of cyanobacteria’s light-harvesting system

Urheber*innen

Matsuo,  Taro
External Organizations;

Ito-Miwa,  Kumiko
External Organizations;

/persons/resource/yhoshino

Hoshino,  Yosuke
3.2 Organic Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Fujii,  Yuri I.
External Organizations;

Kanno,  Satomi
External Organizations;

Fujimoto,  Kazuhiro J.
External Organizations;

Tsuji,  Rio
External Organizations;

Takeda,  Shinnosuke
External Organizations;

Onami,  Chieko
External Organizations;

Arai,  Chihiro
External Organizations;

Yoshiyama,  Yoko
External Organizations;

Mino,  Yoshihisa
External Organizations;

Kato,  Yuki
External Organizations;

Yanai,  Takeshi
External Organizations;

Fujita,  Yuichi
External Organizations;

Masuda,  Shinji
External Organizations;

Kakegawa,  Takeshi
External Organizations;

Miyashita,  Hideaki
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5035087.pdf
(Verlagsversion), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Matsuo, T., Ito-Miwa, K., Hoshino, Y., Fujii, Y. I., Kanno, S., Fujimoto, K. J., Tsuji, R., Takeda, S., Onami, C., Arai, C., Yoshiyama, Y., Mino, Y., Kato, Y., Yanai, T., Fujita, Y., Masuda, S., Kakegawa, T., Miyashita, H. (2025): Archaean green-light environments drove the evolution of cyanobacteria’s light-harvesting system. - Nature Ecology and Evolution, 9, 599-612.
https://doi.org/10.1038/s41559-025-02637-3


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5035087
Zusammenfassung
Cyanobacteria induced the great oxidation event around 2.4 billion years ago, probably triggering the rise in aerobic biodiversity. While chlorophylls are universal pigments used by all phototrophic organisms, cyanobacteria use additional pigments called phycobilins for their light-harvesting antennas—phycobilisomes—to absorb light energy at complementary wavelengths to chlorophylls. Nonetheless, an enigma persists: why did cyanobacteria need phycobilisomes? Here, we demonstrate through numerical simulations that the underwater light spectrum during the Archaean era was probably predominantly green owing to oxidized Fe(III) precipitation. The green-light environments, probably shaped by photosynthetic organisms, may have directed their own photosynthetic evolution. Genetic engineering of extant cyanobacteria, simulating past natural selection, suggests that cyanobacteria that acquired a green-specialized phycobilin called phycoerythrobilin could have flourished under green-light environments. Phylogenetic analyses indicate that the common ancestor of modern cyanobacteria embraced all key components of phycobilisomes to establish an intricate energy transfer mechanism towards chlorophylls using green light and thus gained strong selective advantage under green-light conditions. Our findings highlight the co-evolutionary relationship between oxygenic phototrophs and light environments that defined the aquatic landscape of the Archaean Earth and envision the green colour as a sign of the distinct evolutionary stage of inhabited planets.