Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

First evidence for cold-adapted anaerobic oxidation of methane in deep sediments of thermokarst lakes

Urheber*innen
/persons/resource/mwinkel

Winkel,  Matthias
3.5 Interface Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Sepulveda-Jauregui,  Armando
External Organizations;

Martinez-Cruz,  Karla
External Organizations;

Heslop,  Joanne
External Organizations;

/persons/resource/rrijkers

Rijkers,  Ruud
3.7 Geomicrobiology, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/fhorn

Horn,  Fabian
3.7 Geomicrobiology, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/sliebner

Liebner,  Susanne
3.7 Geomicrobiology, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Anthony,  Katey M Walter
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

4038890.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Winkel, M., Sepulveda-Jauregui, A., Martinez-Cruz, K., Heslop, J., Rijkers, R., Horn, F., Liebner, S., Anthony, K. M. W. (2019): First evidence for cold-adapted anaerobic oxidation of methane in deep sediments of thermokarst lakes. - Environmental Research Communications, 1, 2, 021002.
https://doi.org/10.1088/2515-7620/ab1042


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_4038890
Zusammenfassung
Microbial decomposition of thawed permafrost carbon in thermokarst lakes leads to the release of ancient carbon as the greenhouse gas methane (CH4), yet potential mitigating processes are not understood. Here, we report δ 13C–CH4 signatures in the pore water of a thermokarst lake sediment core that points towards in situ occurrence of anaerobic oxidation of methane (AOM). Analysis of the microbial communities showed a natural enrichment in CH4-oxidizing archaeal communities that occur in sediment horizons at temperatures near 0 °C. These archaea also showed high rates of AOM in laboratory incubations. Calculation of the stable isotopes suggests that 41 to 83% of in situ dissolved CH4 is consumed anaerobically. Quantification of functional genes (mcrA) for anaerobic methanotrophic communities revealed up to 6.7 ± 0.7 × 105 copy numbers g−1 wet weight and showed similar abundances to bacterial 16S rRNA gene sequences in the sediment layers with the highest AOM rates. We conclude that these AOM communities are fueled by CH4 produced from permafrost organic matter degradation in the underlying sediments that represent the radially expanding permafrost thaw front beneath the lake. If these communities are widespread in thermokarst environments, they could have a major mitigating effect on the global CH4 emissions.