Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  A combined neural network‐ and physics‐based approach for modeling plasmasphere dynamics

Zhelavskaya, I., Aseev, N., Shprits, Y. (2021): A combined neural network‐ and physics‐based approach for modeling plasmasphere dynamics. - Journal of Geophysical Research: Space Physics, 126, 3, e2020JA028077.
https://doi.org/10.1029/2020JA028077

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
5005806.pdf (Verlagsversion), 21MB
Name:
5005806.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
CC BY-NC-ND 4.0

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zhelavskaya, Irina1, 2, Autor              
Aseev, N.1, 2, Autor              
Shprits, Yuri1, 2, Autor              
Affiliations:
12.7 Space Physics and Space Weather, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_2239888              
2PAGER project, External Organizations, https://www.spacepager.eu/, ou_5010784              

Inhalt

einblenden:
ausblenden:
Schlagwörter: DEAL Wiley
 Zusammenfassung: In recent years, feedforward neural networks (NNs) have been successfully applied to reconstruct global plasmasphere dynamics in the equatorial plane. These neural network‐based models capture the large‐scale dynamics of the plasmasphere, such as plume formation and erosion of the plasmasphere on the nightside. However, their performance depends strongly on the availability of training data. When the data coverage is limited or non‐existent, as occurs during geomagnetic storms, the performance of NNs significantly decreases, as networks inherently cannot learn from the limited number of examples. This limitation can be overcome by employing physics‐based modeling during strong geomagnetic storms. Physics‐based models show a stable performance during periods of disturbed geomagnetic activity, if they are correctly initialized and configured. In this study, we illustrate how to combine the neural network‐ and physics‐based models of the plasmasphere in an optimal way by using data assimilation. The proposed approach utilizes advantages of both neural network‐ and physics‐based modeling and produces global plasma density reconstructions for both quiet and disturbed geomagnetic activity, including extreme geomagnetic storms. We validate the models quantitatively by comparing their output to the in‐situ density measurements from RBSP‐A for an 18‐month out‐of‐sample period from 30 June 2016 to 01 January 2018, and computing performance metrics. To validate the global density reconstructions qualitatively, we compare them to the IMAGE EUV images of the He+ particle distribution in the Earth's plasmasphere for a number of events in the past, including the Halloween storm in 2003.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2021-02-192021
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1029/2020JA028077
GFZPOF: p4 T3 Restless Earth
GFZPOFWEITERE: p4 MESI
OATYPE: Hybrid - DEAL Wiley
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : PAGER
Grant ID : 870452
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Geophysical Research: Space Physics
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 126 (3) Artikelnummer: e2020JA028077 Start- / Endseite: - Identifikator: ISSN: 2169-9380
ISSN: 2169-9402
CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/jgr_space_physics