Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Assessment of length-of-day and universal time predictions based on the results of the Second Earth Orientation Parameters Prediction Comparison Campaign

Śliwińska-Bronowicz, J., Kur, T., Wińska, M., Dobslaw, H., Nastula, J., Partyka, A., Belda, S., Bizouard, C., Boggs, D., Bruni, S., Chen, L., Chin, M., Dhar, S., Dill, R., Ferrandiz, J. M., Gou, J., Gross, R., Guessoum, S., Han, S., Heinkelmann, R., Irrgang, C., Kiani Shahvandi, M., Li, J., Ligas, M., Liu, L., Lu, W., Mayer, V., Michalczak, M., Modiri, S., Otten, M., Ratcliff, T., Raut, S., Saynisch-Wagner, J., Schartner, M., Schoenemann, E., Schuh, H., Soja, B., Su, X., Thaller, D., Thomas, M., Wang, G., Wu, Y., Xu, X., Yang, X., Zhao, X., Zhou, Z. (2024): Assessment of length-of-day and universal time predictions based on the results of the Second Earth Orientation Parameters Prediction Comparison Campaign. - Journal of Geodesy, 98, 22.
https://doi.org/10.1007/s00190-024-01824-7

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
5025618.pdf (Verlagsversion), 10MB
Name:
5025618.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Śliwińska-Bronowicz, Justyna1, Autor
Kur, Tomasz1, Autor
Wińska, Małgorzata1, Autor
Dobslaw, Henryk2, Autor              
Nastula, Jolanta1, Autor
Partyka, Aleksander1, Autor
Belda, Santiago1, Autor
Bizouard, Christian1, Autor
Boggs, Dale1, Autor
Bruni, Sara1, Autor
Chen, Lue1, Autor
Chin, Mike1, Autor
Dhar, Sujata3, Autor              
Dill, R.2, Autor              
Ferrandiz, Jose Manuel1, Autor
Gou, Junyang1, Autor
Gross, Richard1, Autor
Guessoum, Sonia1, Autor
Han, Songtao1, Autor
Heinkelmann, R.3, Autor              
Irrgang, C.2, Autor              Kiani Shahvandi, Mostafa1, AutorLi, Jia1, AutorLigas, Marcin1, AutorLiu, Lintao1, AutorLu, Weitao1, AutorMayer, Volker1, AutorMichalczak, Maciej1, AutorModiri, Sadegh1, AutorOtten, Michiel1, AutorRatcliff, Todd1, AutorRaut, Shrishail3, Autor              Saynisch-Wagner, J.2, Autor              Schartner, Matthias1, AutorSchoenemann, Erik1, AutorSchuh, H.3, Autor              Soja, Benedikt1, AutorSu, Xiaoqing1, AutorThaller, Daniela1, AutorThomas, M.2, Autor              Wang, Guocheng1, AutorWu, Yuanwei1, AutorXu, Xueqing1, AutorYang, Xinyu1, AutorZhao, Xin1, AutorZhou, Zhijin1, Autor mehr..
Affiliations:
1External Organizations, ou_persistent22              
21.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146027              
31.1 Space Geodetic Techniques, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, ou_146025              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Earth Orientation Parameters (EOP); Length-of-day (LOD); UT1-UTC; Prediction
 Zusammenfassung: Predicting Earth Orientation Parameters (EOP) is crucial for precise positioning and navigation both on the Earth’s surface and in space. In recent years, many approaches have been developed to forecast EOP, incorporating observed EOP as well as information on the effective angular momentum (EAM) derived from numerical models of the atmosphere, oceans, and land-surface dynamics. The Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC) aimed to comprehensively evaluate EOP forecasts from many international participants and identify the most promising prediction methodologies. This paper presents the validation results of predictions for universal time and length-of-day variations submitted during the 2nd EOP PCC, providing an assessment of their accuracy and reliability. We conduct a detailed evaluation of all valid forecasts using the IERS 14 C04 solution provided by the International Earth Rotation and Reference Systems Service (IERS) as a reference and mean absolute error as the quality measure. Our analysis demonstrates that approaches based on machine learning or the combination of least squares and autoregression, with the use of EAM information as an additional input, provide the highest prediction accuracy for both investigated parameters. Utilizing precise EAM data and forecasts emerges as a pivotal factor in enhancing forecasting accuracy. Although several methods show some potential to outperform the IERS forecasts, the current standard predictions disseminated by IERS are highly reliable and can be fully recommended for operational purposes.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2024-03-202024
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1007/s00190-024-01824-7
GFZPOF: p4 T2 Ocean and Cryosphere
OATYPE: Hybrid Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Geodesy
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 98 Artikelnummer: 22 Start- / Endseite: - Identifikator: CoNE: https://gfzpublic.gfz-potsdam.de/cone/journals/resource/journals265
Publisher: Springer Nature