English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Data Publication

Soil physical and hydraulic properties along two chronosequences of proglacial moraines

Authors
/persons/resource/aha

Hartmann,  Anne
4.4 Hydrology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Weiler,  Markus

/persons/resource/blume

Blume,  T.
4.4 Hydrology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource

https://doi.org/10.5194/essd-2020-110
(Supplementary material)

Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Hartmann, A., Weiler, M., Blume, T. (2020): Soil physical and hydraulic properties along two chronosequences of proglacial moraines.
https://doi.org/10.5880/GFZ.4.4.2020.004


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5003788
Abstract
The data set ": Soil physical and hydraulic properties along two chronosequences of proglacial moraines" consists of several individual files in tabstop delimeted text format. The data set contains soil physical data from two chronosequences of moraines in glacier forefields in the central Alps, Switzerland. Aim of the study was to investigate the impact of age and parent material on soil physical characteristics. At the forefield of the Stone Glacier the moraines developed from silicate parent material (S) and at the forefield of the Griessfirn from calcareous parent material (C). At each forefield disturbed and undisturbed soil samples were collected from four moraines of different ages and porosity, bulk density, particle size distribution, gravel content, ignition loss, retention curves and unsaturated hydraulic conductivity curves were determined. Per moraine, three sampling sites were identified based on the level of vegetation complexity [low, medium, high] (for details on this vegetation classification see Maier et al., 2019). Two sampling locations spaced 3 to 4 m apart were selected per vegetation complexity at each moraine. These different sampling locations are identified in the files as location 1 and 2. Data sets from the moraines developed from silicate parent material are marked with S and data from the moraines with calcareous parent material are marked with C. For the C forefield bulk density, porosity and ignition loss are listed in a single file. For the S location the ignition loss data is listed in a separate file from the bulk density and porosity data. In each file the sample type, the sample volume, the sample number, the moraine age, the sampling depth, and the level of vegetation complexity are provided. The particle size distributions of the fine earth and the gravel content are also listed in individual files. Again, the sample number, moraine age, vegetation complexity, sampling depth and sampling location are noted in the files. For the retention curves and the unsaturated hydraulic conductivity curves, two files exist for each curve and glacier forefield, which are named accordingly with the glacier forefield identification and type of curve. An overview file for each glacier forefield contains a list with the sample number, moraine age, sampling depth, vegetation complexity and sampling location. The other two files per curve contain the lab measurements. For the retention curve data, the sample numbers link the pressure head [cm] values provided in one file to the corresponding volumetric water content [-] values provided in the other file. The same applies to the hydraulic conductivity curve where the sample number now links the unsaturated hydraulic conductivity [cm/h] to the corresponding pressure head [cm].