Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Energy release and transport in solar eruptive events

Urheber*innen

Matthews,  Sarah
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Matthews, S. (2023): Energy release and transport in solar eruptive events, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-3889


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020657
Zusammenfassung
The magnetic field of the corona stores the energy that is released via magnetic reconnection during solar flares and coronal mass ejections (CMEs). Flares with CMEs are often described by the ‘standard’ eruptive flare (CSHKP) model and this offers a conceptual framework in which to investigate the global characteristics of the energy release and transport in the context of the magnetic field configuration. The low plasma beta environment of the corona means the magnetic field plays a central role in the energy transport, and different magnetic field configurations can lead to a variety of outcomes in terms of the evolution of the energy release, the efficiency of the energy transport mechanisms and the locations where the energy is deposited. Despite the often rather good agreement between observations and the ‘standard’ model, many open questions remain particularly in respect to the triggering of the energy release. In this talk I will discuss how multi-wavelength spectroscopy used in tandem with magnetic field information has enabled us to understand some of these open questions, as well as how new and upcoming instrumentation will lead to new advances, in particular the JAXA/NASA/ESA Solar- C mission.