English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Energy release and transport in solar eruptive events

Authors

Matthews,  Sarah
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Matthews, S. (2023): Energy release and transport in solar eruptive events, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-3889


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020657
Abstract
The magnetic field of the corona stores the energy that is released via magnetic reconnection during solar flares and coronal mass ejections (CMEs). Flares with CMEs are often described by the ‘standard’ eruptive flare (CSHKP) model and this offers a conceptual framework in which to investigate the global characteristics of the energy release and transport in the context of the magnetic field configuration. The low plasma beta environment of the corona means the magnetic field plays a central role in the energy transport, and different magnetic field configurations can lead to a variety of outcomes in terms of the evolution of the energy release, the efficiency of the energy transport mechanisms and the locations where the energy is deposited. Despite the often rather good agreement between observations and the ‘standard’ model, many open questions remain particularly in respect to the triggering of the energy release. In this talk I will discuss how multi-wavelength spectroscopy used in tandem with magnetic field information has enabled us to understand some of these open questions, as well as how new and upcoming instrumentation will lead to new advances, in particular the JAXA/NASA/ESA Solar- C mission.