English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate

Authors
/persons/resource/hkonrad

Konrad,  H.
1.3 Earth System Modelling, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/sasgen

Sasgen,  I.
1.3 Earth System Modelling, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Pollard,  David
External Organizations;

/persons/resource/volkerk

Klemann,  V.
1.3 Earth System Modelling, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Konrad, H., Sasgen, I., Pollard, D., Klemann, V. (2015): Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. - Earth and Planetary Science Letters, 432, 254-264.
https://doi.org/10.1016/j.epsl.2015.10.008


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_1350406
Abstract
We employ a coupled model for ice-sheet dynamics and Maxwell viscoelastic solid-Earth dynamics, including a gravitationally consistent description of sea level. With this model, we study the influence of the solid Earth on the future evolution of the West Antarctic Ice Sheet (WAIS). Starting from steady-state conditions close to the present-day configuration of the Antarctic Ice Sheet, we apply different atmospheric and oceanic forcings and solid-Earth rheologies in order to analyse the retreat of the WAIS. Climate forcing is the primary control on the occurrence of WAIS collapse. For moderate climate forcing and weak solid-Earth rheologies, however, we find that the relative sea level (RSL) fall associated with the viscoelastic solid-Earth response due to unloading by WAIS retreat limits the retreat to the Amundsen Sea embayment on time scales of several millennia, whereas stiffer Earth structures yield a collapse under these conditions. Under stronger climate forcing, weak Earth structures associated with the West Antarctic rift system produce a delay of up to 5000 years in comparison to stiffer, Antarctic-average solid-Earth rheologies. Furthermore, we find that sea-level rise from an assumed fast deglaciation of the Greenland Ice Sheet induces WAIS collapse in the presence of higher asthenosphere viscosities in cases when the climatic forcing is too weak to force WAIS collapse alone.