English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Backward modelling of the subsidence evolution of the Colorado Basin, offshore Argentina and its relation to the evolution of the conjugate Orange Basin, offshore SW Africa

Authors
/persons/resource/dressel

Dressel,  Ingo
6.1 Basin Modelling, 6.0 Geotechnologies, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/leni

Scheck-Wenderoth,  Magdalena
6.1 Basin Modelling, 6.0 Geotechnologies, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/cacace

Cacace,  Mauro
6.1 Basin Modelling, 6.0 Geotechnologies, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)

1959901.pdf
(Postprint), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Dressel, I., Scheck-Wenderoth, M., Cacace, M. (2017): Backward modelling of the subsidence evolution of the Colorado Basin, offshore Argentina and its relation to the evolution of the conjugate Orange Basin, offshore SW Africa. - Tectonophysics, 716, 168-181.
https://doi.org/10.1016/j.tecto.2016.08.007


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_1959901
Abstract
In this study we focus on reconstructing the post-rift subsidence evolution of the Colorado Basin, offshore Argentina. We make use of detailed structural information about its present-day configuration of the sedimentary infill and the crystalline crust. This information is used as input in a backward modelling approach which relies on the assumption of local isostasy to reconstruct the amount of subsidence as induced by the sedimentary load through different time stages. We also attempt a quantification of the thermal effects on the subsidence as induced by the rifting, here included by following the uniform stretching model of lithosphere thinning and exponentially cooling through time. Based on the available information about the present-day geological state of the system, our modelling results indicate a rather continuous post-rift subsidence for the Colorado Basin, and give no significant evidence of any noticeable uplift phase. In a second stage, we compare the post-rift evolution of the Colorado Basin with the subsidence evolution as constrained for its conjugate SW African passive margin, the Orange Basin. Despite these two basins formed almost coevally and therefore in a similar large scale geodynamic context, their post-rift subsidence histories differ. Based on this result, we discuss causative tectonic processes likely to provide an explanation to the observed differences. We therefore conclude that it is most probable that additional tectonic components, other than the ridge-push from the spreading of the South Atlantic Ocean, are required to explain the observed differences in the subsidence of the two basins along the conjugate passive margins. Such additional tectonic components might be related to a dynamic mantle component in the form of either plume activity (Africa) or a subducting slab and the presence of an ongoing compressional stress system as revealed for different areas in South America.