Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Shear wave anisotropy beneath the Andes from the BANJO, SEDA and PISCO experiments.

Urheber*innen

Polet,  J.
External Organizations;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

Silver,  P. G.
External Organizations;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

Beck,  S.
External Organizations;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

Wallace,  T.
External Organizations;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

Zandt,  G.
External Organizations;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

Ruppert,  S.
External Organizations;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

/persons/resource/kind

Kind,  Rainer
2.4 Seismology, 2.0 Physics of the Earth, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

/persons/resource/rudloff

Rudloff,  Alexander
Staff Scientific Executive Board, GFZ Publication Database, Deutsches GeoForschungsZentrum;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Polet, J., Silver, P. G., Beck, S., Wallace, T., Zandt, G., Ruppert, S., Kind, R., Rudloff, A. (2000): Shear wave anisotropy beneath the Andes from the BANJO, SEDA and PISCO experiments. - Journal of Geophysical Research, 105, B3, 6287-6304.
https://doi.org/10.1029/1999JB900326


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_227747
Zusammenfassung
We present the results of a detailed shear wave splitting analysis of data collected by three temporary broadband deployments located in central western South America: the Broadband Andean Joint experiment (BANJO), a 1000-km-long east-west line at 20 degrees S, and the Projecto de Investigacion Sismologica de la Cordillera Occidental (PISCO) and Seismic Exploration of the Deep Altiplano (SEDA), deployed several hunderd kilometers north and south of this line. We determined the splitting parameters phi (fast polarization direction) and delta t (splitting delay time) for waves that sample the above- and below-slab regions: teleseismic *KS and S, ScS waves from local deep-focus events, as well as S waves from intermediate-focus events that sample only the above-slab region. All but one of the *KS stacks for the BANJO stations show E-W fast directions with delta t varying between 0.4 and 1.5 s. However, for *KS recorded at most of the SEDA and PISCO stations, and for local deep-focus S events north and south of BANJO, there is a rotation of phi to a more nearly trench parallel direction. The splitting parameters for above-slab paths, determined from events around 200 km deep to western stations, yield small delay times (less than or equal to 0.3 a) and N-S fast polarization directions. Assuming the anisotropy is limited to the top 400 km of the mantle (olivine stability field), these data suggest the following spatial distribution of anisotropy. For the above-slab component, as one goes from east (where *KS reflects the above-slab component) to west, phi changes from E-W to N-S, and delay times are substantially reduced. This change may mark the. transition from the Brazilian craton to actively deforming (E-W shortening) Andean mantle. We see no evidence for the strain field expected for either corner flow or shear in the mantle wedge associated with relative plate motion. The small delay times for above-slab paths in the west require the existence of significant, spatially varying below-slab anisotropy to explain the *KS results. The implied anisotropic pattern below the slab is not easily explained by a simple model of slab-entrained shear flow beneath the plate. Instead, flow induced by the retrograde motion of the slab, in combination with local structural variations, may provide a better explanation.