English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Discrete Element Modelling of Hydraulic Fracture Propagation and Dynamic Interaction with Natural Fractures in Hard Rock

Authors
/persons/resource/jsyoon

Yoon,  J.-S.
2.6 Seismic Hazard and Stress Field, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/zang

Zang,  Arno
2.6 Seismic Hazard and Stress Field, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/ove

Stephansson,  Ove
2.6 Seismic Hazard and Stress Field, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/hannes

Hofmann,  Hannes
6.2 Geothermal Energy Systems, 6.0 Geotechnologies, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/zimm

Zimmermann,  G.
6.2 Geothermal Energy Systems, 6.0 Geotechnologies, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)

2322894.pdf
(Publisher version), 520KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Yoon, J.-S., Zang, A., Stephansson, O., Hofmann, H., Zimmermann, G. (2017): Discrete Element Modelling of Hydraulic Fracture Propagation and Dynamic Interaction with Natural Fractures in Hard Rock. - Procedia Engineering, 191, 1023-1031.
https://doi.org/10.1016/j.proeng.2017.05.275


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_2322894
Abstract
In this study, we used the Particle Flow Code 2D (PFC2D) to simulate interaction of hydraulic fractures and natural fractures in low permeable hard rock. Natural fractures are simulated using the smooth joint model of PFC2D. We modified our fluid flow algorithm to model larger fracture permeability, and we investigated interactions of hydraulic fractures and natural fractures by varying the angle of approach and viscosity of the fracturing fluid. We also investigated seismic events evolving in a complex fracture network. The results demonstrate that our modelling tool is able to capture all possible interactions of hydraulic and natural fractures: Arrest, Crossing, Slippage of hydraulic fracture, Dilation of natural fracture, Closing/Opening of natural fracture. With low angle of approach, the hydraulic fracture coalesces with the natural fractures and results in hydro-shearing and propagation of hydro-wing fractures at the tips that are mostly Mode I type. We tested the model containing multiple natural fractures with varied fluid viscosity. Hydraulic fracture generated by high viscosity fluid tends to be localized, linear and less influenced by the natural fractures. In the complex network of natural fractures, fluid columns built along the fracture network increase the local state of stress by stress shadowing. Hydro-shearing of the natural fractures that were under increased stress state can be explained as the main mechanism responsible for occurrence of larger magnitude microseismic events.