English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Millennial-scale East Asian monsoon variability of the last glacial deduced from annually laminated sediments from Lake Sihailongwan, N.E. China

Authors
/persons/resource/ojemi

Mingram,  J.
5.2 Climate Dynamics and Landscape Evolution, 5.0 Geoarchives, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Stebich,  Martina
External Organizations;

/persons/resource/schet

Schettler,  Georg
5.2 Climate Dynamics and Landscape Evolution, 5.0 Geoarchives, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/yaqin

Hu,  Yaqin
5.2 Climate Dynamics and Landscape Evolution, 5.0 Geoarchives, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Rioual,  Patrick
External Organizations;

/persons/resource/nowa

Nowaczyk,  N.
5.2 Climate Dynamics and Landscape Evolution, 5.0 Geoarchives, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/dulski

Dulski,  Peter
5.2 Climate Dynamics and Landscape Evolution, 5.0 Geoarchives, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

You,  Haitao
External Organizations;

Opitz,  Stephan
External Organizations;

Liu,  Qiang
External Organizations;

Liu,  Jiaqi
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Mingram, J., Stebich, M., Schettler, G., Hu, Y., Rioual, P., Nowaczyk, N., Dulski, P., You, H., Opitz, S., Liu, Q., Liu, J. (2018): Millennial-scale East Asian monsoon variability of the last glacial deduced from annually laminated sediments from Lake Sihailongwan, N.E. China. - Quaternary Science Reviews, 201, 57-76.
https://doi.org/10.1016/j.quascirev.2018.09.023


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_3597892
Abstract
Lake Sihailongwan in Jilin province, NE China, provides the first continuous and almost entirely seasonally laminated sediment record on the East Asian mainland comprising the complete Holocene, the Late-glacial period, and large parts of the Last Glacial. Sediment and palynological proxy data provide a finely resolved regional environmental history of the East Asian monsoon. A varve-based chronology (shl-vc2) has been established for the last 65,000 years and allows a detailed comparison with other long regional and global palaeoclimate records. Vegetation density of the study area depends, on the long run, on precessionally forced insolation changes, with superimposed millennial-scale variability during the Last Glacial. Periodic increase of organic carbon content and thermophilous tree species like Ulmus and Fraxinus and contemporary decrease of shrub Alnus precisely mirror millennial-scale climatic variations primarily known from Greenland ice-cores as Dansgaard-Oeschger cycles, as well as Late-glacial period climate changes. Percentages of trees & shrubs pollen and in particular lake productivity-related data reveal substantial differences between interstadial intensities, with those between 50 and 60 ka BP being more pronounced than the following ones.