English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Thesis

Bestimmung von Ozonabbauraten über der Arktis und Antarktis mittels Ozonsonden- und Satellitendaten

Authors
/persons/resource/streibel

Streibel,  M.
0 Pre-GFZ, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Streibel, M. (2006): Bestimmung von Ozonabbauraten über der Arktis und Antarktis mittels Ozonsonden- und Satellitendaten, PhD Thesis, 146 S. p.
URN: http://nbn-resolving.de/urn/resolver.pl?urn= urn:nbn:de:kobv:517-opus-6570


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_396197
Abstract
Diese Arbeit beschäftigt sich mit der chemischen Ozonzerstörung im arktischen und antarktischen stratosphärischen Polarwirbel. Diese wird durch Abbauprodukte von anthropogen emittierten Fluorchlorkohlenwasserstoffen und Halonen, Chlor- und Bromradikale, verursacht. Studien in denen der gemessene und modellierte Ozonabbau verglichen wird zeigen, dass die Prozeße bekannt sind, der quantitative Verlauf allerdings nicht vollständig verstanden ist. Die Prozesse, die zur Ozonzerstörung führen sind in beiden Polarwirbeln ähnlich. Allerdings fällt als Konsequenz unterschiedlicher meteorologischer Bedingungen der chemische Ozonabbau im arktischen Polarwirbel weniger drastisch aus als über der Antarktis. Der arktische Polarwirbel ist im Mittel stärker dynamisch gestört als der antarktische und weist eine stärkere Jahr-zu-Jahr Variabilität auf. Das erschwert die Messung des chemischen Ozonabbaus. Zur Trennung des chemischen Ozonabbaus von der dynamischen Umverteilung des Ozons im arktischen Polarwirbel wurde die Matchmethode entwickelt. Bei dieser Methode werden Luftpakete innerhalb des Polarwirbels mehrfach beprobt, um den chemischen Anteil der Ozonänderung zu quantifizieren. Zur Identifizierung von doppelt beprobten Luftpaketen werden Trajektorien aus Windfeldern berechnet. Können zwei Messungen im Rahmen bestimmter Qualitätskriterien durch eine Trajektorie verbunden werden, kann die Ozondifferenz zwischen beiden Sondierungen berechnet und als chemischer Ozonabbau interpretiert werden. Eine solche Koinzidenz wird Match genannt. Der Matchmethode liegt ein statistischer Ansatz zugrunde, so dass eine Vielzahl solcher doppelt beprobter Luftmassen vorliegen muss, um gesicherte Aussagen über die Ozonzerstörung gewinnen zu können. So erhält man die Ozonzerstörung in einem bestimmten Zeitintervall, also Ozonabbauraten. Um die Anzahl an doppelt beprobten Luftpackten zu erhöhen wurde eine aktive Koordinierung der Ozonsondenaufstiege entwickelt. Im Rahmen dieser Arbeit wurden Matchkampagnen während des arktischen Winters 2002/2003 und zum ersten Mal während eines antarktischen Winter (2003) durchgeführt. Aus den gewonnenen Daten wurden Ozonabbauraten in beiden Polarwirbeln bestimmt. Diese Abbauraten dienen zum einen der Evaluierung von Modellen, ermöglichen aber auch den direkten Vergleich von Ozonabbauraten in beiden Polarwirbeln. Der Winter 2002/2003 war zu Beginn durch sehr tiefe Temperaturen in der mittleren und unteren Stratosphäre charakterisiert, so dass die Matchkampagne Ende November gestartet wurde. Ab Januar war der Polarwirbel zeitweise stark dynamisch gestört. Die Kampagne ging bis Mitte März. Für den Höhenbereich von 400 bis 550 K potentieller Temperatur (15-23 km) konnten Ozonabbauraten und der Verlust in der Gesamtsäule berechnet werden. Die Ozonabbauraten wurden in verschiedenen Tests auf ihre Stabilität überprüft. Der antarktische Polarwirbel war vom Beginn des Winters bis Mitte Oktober 2003 sehr kalt und stellte Ende September kurzzeitig den Rekord für die größte bisher aufgetretene Ozonloch-Fläche ein. Es konnten für den Kampagnenzeitraum, Anfang Juni bis Anfang Oktober, Ozonabbauraten im Höhenbereich von 400 bis 550 K potentieller Temperatur ermittelt werden. Der zeitliche Verlauf des Ozonabbaus war dabei auf fast allen Höhenniveaus identisch. Die Zunahme des Sonnenlichtes im Polarwirbel mit der Zeit führt zu einem starken Anwachsen der Ozonabbauraten. Ab Mitte September gingen die Ozonabbauraten auf Null zurück, da bis zu diesem Zeitpunkt das gesamte Ozon zwischen ca. 14 und 21 km zerstört wurde. Im letzten Teil der Arbeit wird ein neuer Algorithmus auf Basis der multivariaten Regression vorgestellt, mit dem Ozonabbauraten aus Ozonprofilen verschiedener Sensoren gleichzeitig berechnet werden können. Dabei können neben der Ozonabbaurate die systematischen Fehler zwischen den einzelnen Sensoren bestimmt werden. Dies wurde exemplarisch am antarktischen Winter 2003 für das 475 K potentielle Temperatur Niveau gezeigt. Neben den Ozonprofilen der Sonden wurden Daten von zwei Satellitenexperimenten verwendet. Die mit der multivariaten Matchtechnik berechneten Ozonabbauraten stimmen gut mit den Ozonabbauraten der Einzelsensor-Matchansätze überein.