Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Development of 3D rift heterogeneity through fault network evolution

Urheber*innen

Naliboff,  J. B.
External Organizations;

/persons/resource/acglerum

Glerum,  A.
2.5 Geodynamic Modelling, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
3.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/brune

Brune,  Sascha
2.5 Geodynamic Modelling, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Péron‐Pinvidic,  G.
External Organizations;

/persons/resource/wrona

Wrona,  Thilo
2.5 Geodynamic Modelling, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5002336.pdf
(Verlagsversion), 5MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Naliboff, J. B., Glerum, A., Brune, S., Péron‐Pinvidic, G., Wrona, T. (2020): Development of 3D rift heterogeneity through fault network evolution. - Geophysical Research Letters, 47, 13, e2019GL086611.
https://doi.org/10.1029/2019GL086611


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5002336
Zusammenfassung
Observations of rift and rifted margin architecture suggest that significant spatial and temporal structural heterogeneity develops during the multiphase evolution of continental rifting. Inheritance is often invoked to explain this heterogeneity, such as pre‐existing anisotropies in rock composition, rheology, and deformation. Here, we use high‐resolution 3D thermal‐mechanical numerical models of continental extension to demonstrate that rift‐parallel heterogeneity may develop solely through fault network evolution during the transition from distributed to localized deformation. In our models, the initial phase of distributed normal faulting is seeded through randomized initial strength perturbations in an otherwise laterally homogeneous lithosphere extending at a constant rate. Continued extension localizes deformation onto lithosphere‐scale faults, which are laterally offset by 10’s of km and discontinuous along‐strike. These results demonstrate that rift‐ and margin‐parallel heterogeneity of large‐scale fault patterns may in‐part be a natural byproduct of fault network coalescence.