English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Data Publication

3D-URG : 3D gravity constrained structural model of the Upper Rhine Graben

Authors
/persons/resource/freymark

Freymark,  J.
4.5 Basin Modelling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/sippel

Bott [Sippel],  Judith
4.5 Basin Modelling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/leni

Scheck-Wenderoth,  Magdalena
4.5 Basin Modelling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Bär,  Kristian
External Organizations;

/persons/resource/manfred

Stiller,  Manfred
2.7 Near-surface Geophysics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Fritsche,  Johann-Gerhard
External Organizations;

Kracht,  Matthias
External Organizations;

/persons/resource/lauragd

Gomez Dacal,  Maria Laura
4.5 Basin Modelling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Freymark, J., Bott [Sippel], J., Scheck-Wenderoth, M., Bär, K., Stiller, M., Fritsche, J.-G., Kracht, M., Gomez Dacal, M. L. (2020): 3D-URG: 3D gravity constrained structural model of the Upper Rhine Graben.
https://doi.org/10.5880/GFZ.4.5.2020.004


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5002848
Abstract
We provide a set of grid files that collectively allow recreating a 3D geological model which covers the Upper Rhine Graben and its adjacent tectonic domains, such as portions of the Swiss Alps, the Molasse Basin, the Black Forest and Vosges Mountains, the Rhenish Massif and the Lower Rhine Graben. The data publication is a complement to the publication of Freymark et al. (2017). Accordingly, the provided structural model consists of (i) 14 sedimentary and volcanic units; (ii) a crystalline crust composed of seven upper crustal units and a lower crustal unit; and (iii) two lithospheric mantle units. The files provided here include information on the regional variation of these geological units in terms of their depth and thickness, both attributes being allocated to regularly spaced grid nodes with horizontal spacing of 1 km. The model has originally been developed to obtain a basis for numerical simulations of heat transport, to calculate the lithospheric-scale conductive thermal field and assess the related geothermal potentials, in particular for the Upper Rhine Graben (a region especially well-suited for geothermal energy exploitation). Since such simulations require the subsurface variation of physical rock properties to be defined, the 3D model differentiates units of contrasting materials, i.e. rock types. On that account, a large number of geological and geophysical data have been analysed (see Related Work) and we shortly describe here how they have been integrated into a consistent 3D model (Methods). For further information on the data usage and the characteristics of the units (e.g., lithology, density, thermal properties), the reader is referred to the original article (Freymark et al., 2017). The contents and structure of the grid files provided herewith are described in the Technical Info section.