English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Thesis

Earth's magnetic field over the last 1000 years

Authors
/persons/resource/robins

Senftleben,  R.
2.3 Geomagnetism, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/monika

Korte,  M.
2.3 Geomagnetism, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Leonardt,  Roman
External Organizations;

/persons/resource/nowa

Nowaczyk,  N.
4.3 Climate Dynamics and Landscape Evolution, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Senftleben, R. (2020): Earth's magnetic field over the last 1000 years, PhD Thesis, Potsdam : Universität Potsdam, 104 p.
https://doi.org/10.25932/publishup-47315


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5003060
Abstract
To investigate the reliability and stability of spherical harmonic models based on archeo/-paleomagnetic data, 2000 Geomagnetic models were calculated. All models are based on the same data set but with randomized uncertainties. Comparison of these models to the geomagnetic field model gufm1 showed that large scale magnetic field structures up to spherical harmonic degree 4 are stable throughout all models. Through a ranking of all models by comparing the dipole coefficients to gufm1 more realistic uncertainty estimates were derived than the authors of the data provide. The derived uncertainty estimates were used in further modelling, which combines archeo/-paleomagnetic and historical data. The huge difference in data count, accuracy and coverage of these two very different data sources made it necessary to introduce a time dependent spatial damping, which was constructed to constrain the spatial complexity of the model. Finally 501 models were calculated by considering that each data point is a Gaussian random variable, whose mean is the original value and whose standard deviation is its uncertainty. The final model arhimag1k is calculated by taking the mean of the 501 sets of Gauss coefficients. arhimag1k fits different dependent and independent data sets well. It shows an early reverse flux patch at the core-mantle boundary between 1000 AD and 1200 AD at the location of the South Atlantic Anomaly today. Another interesting feature is a high latitude flux patch over Greenland between 1200 and 1400 AD. The dipole moment shows a constant behaviour between 1600 and 1840 AD. In the second part of the thesis 4 new paleointensities from 4 different flows of the island Fogo, which is part of Cape Verde, are presented. The data is fitted well by arhimag1k with the exception of the value at 1663 of 28.3 microtesla, which is approximately 10 microtesla lower than the model suggest.